Multiple Linear Regression

William Brasic

The University of Arizona

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

3

イロン イ理 とくほとう ほとう

OVB

LS Estimator Variance

Goal of Multiple Linear Regression (MLR)

Question 1

What is the goal of multiple linear regression (MLR)?

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

イロト イボト イヨト イヨト

OVB

LS Estimator Variance

Goal of Multiple Linear Regression (MLR)

Question 1

What is the goal of multiple linear regression (MLR)?

Answer to Question 1

- 1. Reduce potential covariates excluded from model that are correlated with included regressors.
- 2. Predict outcome better.
- 3. Analyze more complex relationships.

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

Jnbiasednes

OVB

OLS Estimator Variance

MLR Example

Example 1: MLR Example

If we are interested in determinants of a student's GPA, our $\ensuremath{\mathsf{MLR}}$ model could be

 $gpa = \beta_0 + \beta_1 hours_studied + \beta_2 hours_studied^2 + \beta_3 male \\ + \beta_4 age + \beta_5 sat_score + \beta_6 parent_education + u.$

• What is the effect of how many hours you spend studying on your GPA?

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

イロト 不得 トイヨト イヨト 二日

Jnbiasednes

OVB

Multiple Linear Regression

Definition 1: Multiple Linear Regression Using Vectors

The multiple linear regression model in vector notation is given by

$$y_i = \boldsymbol{x}_i' \boldsymbol{\beta} + u_i$$

for i = 1, ..., n.

- y_i is observation *i*'s outcome.
- \boldsymbol{x}_i is individual *i*'s $(k+1) \times 1$ vector of covariates.
- *β* is the (k + 1) × 1 vector of population parameters.
- u_i is observation *i*'s idiosyncratic shock component.

Introduction to Econometrics: ECON 418-518

イロト 不得 トイラト イラト 一日

Multiple Linear Regression

Definition 2: Multiple Linear Regression Using Matrices

The multiple linear regression model in matrix notation is given by

 $y = X\beta + u$.

- y is the $n \times 1$ vector of outcomes for all individuals.
- X is the $n \times (k+1)$ feature matrix.
- *β* is the (k + 1) × 1 vector of population parameters.
- u is the $n \times 1$ vector of errors for all individuals.

William Brasic

Multiple Linear Regression

<□ ト < □ ト < □ ト < 亘 ト < 亘 ト < 亘 ト Introduction to Econometrics: ECON 418-518

OVB

Multiple Linear Regression

Definition 3: Estimated Multiple Linear Regression

The estimated multiple linear regression model in matrix notation is given by

$$\widehat{\boldsymbol{y}} = X\widehat{\boldsymbol{\beta}}.$$

- \hat{y} is the $n \times 1$ vector of fitted (prediction) values for all individuals.
- X is the $n \times (k+1)$ feature matrix.
- $\widehat{\beta}$ is the $(k+1) \times 1$ vector of estimated parameters.

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

Unbiasednes

Multiple Linear Regression

Definition 4: Multiple Linear Regression Statistics

All definitions discussed for simple linear regression remain the same expect we can represent them nicely using vectors and matrices:

- 1. $\widehat{\boldsymbol{y}} = X\widehat{\boldsymbol{\beta}}.$
- 2. $\widehat{\boldsymbol{u}} = \boldsymbol{y} \widehat{\boldsymbol{y}}.$
- 3. $SSR = \widehat{u}'\widehat{u}$.
- 4. $SST = (\boldsymbol{y} \overline{Y})' (\boldsymbol{y} \overline{Y}).$
- 5. $SSE = \left(\widehat{\boldsymbol{y}} \overline{Y}\right)' \left(\widehat{\boldsymbol{y}} \overline{Y}\right).$

6. $\tilde{R}^2 = 1 - \frac{SSR/(n-k)}{SST/(n-1)}$ where k is the number of estimated parameters (intercept included).

William Brasic

Multiple Linear Regression

< □ ト < □ ト < □ ト < ■ ト < ■ ト < ■ ト ○ へ ○
Introduction to Econometrics: ECON 418-518
</p>

The OLS Solution

Theorem 1: OLS Solution

The solution, $\hat{\beta}$, to the OLS problem is given by

 $\widehat{\boldsymbol{\beta}} = (X'X)^{-1}X'\boldsymbol{y}.$

• We proved this in the Matrix Algebra lecture slides.

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

Linear in Parameters

MLR Assumption 1: Linear in Parameters

The population model is a linear function of the parameters.

• For instance, $y = X\beta + u$.

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

イロト 不得 トイヨト イヨト 二日

OVB

OLS Estimator Variance

Random Sampling

MLR Assumption 2: Random Sampling

We have a random (i.i.d.) sample $\{(y_i, x_i)\}_{i=1}^n$ from the population of interest.

• This will ensure Assumption 4 holds for the entire sample and not just subsets.

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

イロト イポト イヨト イヨト

No Perfect Multicollinearity

MLR Assumption 3: No Perfect Multicollinearity

No Perfect Multicollinearity means no regressor in the matrix X is constant, nor is any regressor a perfect linear combination of other regressors.

- Also called the full rank condition
 - Implies that X'X is invertible, ensuring that our OLS solution exists and is unique.

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

(4) (日本)

Zero Conditional Mean

MLR Assumption 4: Zero Conditional Mean

The expectation of the error term conditioned on the regressors is zero, i.e., $\mathbb{E}[\boldsymbol{u} \mid X] = \mathbf{0}$.

- Also called the exogeneity assumption.
- Important implications include:
 - 1. $\mathbb{E}[u] = \mathbb{E}[\mathbb{E}[u \mid X]] = \mathbb{E}[0] = 0.$
 - 2. $\operatorname{Cov}[X, u] = \mathbb{E}[X'u] \mathbb{E}[X']\mathbb{E}[u] = \mathbb{E}[X'u] = \mathbb{E}[\mathbb{E}[X'u \mid X]] = \mathbb{E}[X\mathbb{E}[u \mid X]] = \mathbf{0}.$
 - 3. $\mathbb{E}[\boldsymbol{y} \mid X] = \mathbb{E}[x\boldsymbol{\beta} + \boldsymbol{u} \mid X] = X\boldsymbol{\beta}$ so $\boldsymbol{\beta}$ represents the average impact of our covariates on y_i .

Theorem 2: Unbiasedness of OLS for MLR

Under MLR Assumptions 1-4, the OLS estimator is unbiased, i.e.,

 $\mathbb{E}\left[\widehat{\boldsymbol{\beta}} \mid X\right] = \boldsymbol{\beta}.$

- By the law of total expectation $\mathbb{E}\left[\widehat{\boldsymbol{\beta}}\right] = \boldsymbol{\beta}.$
- On average, our estimator is equal to the truth
 - The sampling distribution of our estimated parameters is centered around their true values.

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

Proof 1: Unbiased of OLS for MLR Part 1

Using MLR Assumption 1 of $y = X\beta + u$ and MLR Assumption 3 that X has full rank so $(X'X)^{-1}$ exists,

 $\widehat{\boldsymbol{\beta}} = \left(X'X \right)^{-1}X'\boldsymbol{y}$

William Brasic

Multiple Linear Regression

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ♪ ↓ ■ ∽ 𝔅 𝔅 Introduction to Econometrics: ECON 418-518

Proof 1: Unbiased of OLS for MLR Part 1

Using MLR Assumption 1 of $y = X\beta + u$ and MLR Assumption 3 that X has full rank so $(X'X)^{-1}$ exists,

 $\widehat{\boldsymbol{\beta}} = (X'X)^{-1} X' \boldsymbol{y}$ $= (X'X)^{-1} X' (X\boldsymbol{\beta} + \boldsymbol{u})$

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

- 20

イロト 不得 トイヨト イヨト

Proof 1: Unbiased of OLS for MLR Part 1

Using MLR Assumption 1 of $y = X\beta + u$ and MLR Assumption 3 that X has full rank so $(X'X)^{-1}$ exists,

$$\widehat{\boldsymbol{\beta}} = (X'X)^{-1} X' \boldsymbol{y}$$

= $(X'X)^{-1} X' (X\boldsymbol{\beta} + \boldsymbol{u})$
= $(X'X)^{-1} X' X\boldsymbol{\beta} + (X'X)^{-1} X' \boldsymbol{u}$

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

イロト 不得下 イヨト イヨト 二日

Proof 1: Unbiased of OLS for MLR Part 1

Using MLR Assumption 1 of $y = X\beta + u$ and MLR Assumption 3 that X has full rank so $(X'X)^{-1}$ exists,

$$\widehat{\boldsymbol{\beta}} = (X'X)^{-1} X' \boldsymbol{y}$$

= $(X'X)^{-1} X' (X\boldsymbol{\beta} + \boldsymbol{u})$
= $(X'X)^{-1} X' X \boldsymbol{\beta} + (X'X)^{-1} X' \boldsymbol{u}$
= $\boldsymbol{\beta} + (X'X)^{-1} X' \boldsymbol{u}.$

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

- 20

イロト 不得 トイヨト イヨト

Proof 1: Unbiased of OLS for MLR Part 2

Using MLR Assumption 2 of random sampling implying each individual's conditional error term has identical mean and MLR Assumption 4 so this conditional mean is zero,

$$\mathbb{E}\left[\widehat{\boldsymbol{\beta}} \mid X\right] = \mathbb{E}\left[\boldsymbol{\beta} + \left(X'X\right)^{-1}X'\boldsymbol{u} \mid X\right]$$

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

Proof 1: Unbiased of OLS for MLR Part 2

Using MLR Assumption 2 of random sampling implying each individual's conditional error term has identical mean and MLR Assumption 4 so this conditional mean is zero,

$$\mathbb{E}\left[\widehat{\boldsymbol{\beta}} \mid X\right] = \mathbb{E}\left[\boldsymbol{\beta} + \left(X'X\right)^{-1}X'\boldsymbol{u} \mid X\right]$$
$$= \boldsymbol{\beta} + \left(X'X\right)^{-1}X'\mathbb{E}\left[\boldsymbol{u} \mid X\right]$$

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

3

イロト イポト イヨト イヨト

Proof 1: Unbiased of OLS for MLR Part 2

Using MLR Assumption 2 of random sampling implying each individual's conditional error term has identical mean and MLR Assumption 4 so this conditional mean is zero,

$$\mathbb{E}\left[\widehat{\boldsymbol{\beta}} \mid X\right] = \mathbb{E}\left[\boldsymbol{\beta} + (X'X)^{-1} X'\boldsymbol{u} \mid X\right]$$
$$= \boldsymbol{\beta} + (X'X)^{-1} X' \mathbb{E}\left[\boldsymbol{u} \mid X\right]$$
$$= \boldsymbol{\beta} + (X'X)^{-1} X' \boldsymbol{0}$$

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

3

(日)

Proof 1: Unbiased of OLS for MLR Part 2

Using MLR Assumption 2 of random sampling implying each individual's conditional error term has identical mean and MLR Assumption 4 so this conditional mean is zero,

$$\mathbb{E}\left[\widehat{\boldsymbol{\beta}} \mid X\right] = \mathbb{E}\left[\boldsymbol{\beta} + (X'X)^{-1} X'\boldsymbol{u} \mid X\right]$$
$$= \boldsymbol{\beta} + (X'X)^{-1} X' \mathbb{E}\left[\boldsymbol{u} \mid X\right]$$
$$= \boldsymbol{\beta} + (X'X)^{-1} X' \boldsymbol{0}$$
$$= \boldsymbol{\beta}. \quad \Box$$

Hooray!

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

3

(日)

Inbiasednes

OVB

Omitted Variable Bias (OVB)

Definition 5: Omitted Variable Bias (OVB)

The omitted variable bias (OVB) problem is when we exclude a covariate from the model (so it is contained in u_i) that is correlated with one of the included covariates as well as the outcome.

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

- 4 回 ト 4 ヨ ト 4 ヨ ト

Jnbiasednes

OVB

Omitted Variable Bias (OVB)

Example 2: Omitted Variable Bias (OVB)

Suppose the true model is $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + u_i$, but we only regress y_i on x_i giving the equation $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1}$. The estimate of $\hat{\beta}_1$ will be biased when the covariance between x_{i1} and x_{i2} is non-zero.

- Excluding relevant regressors could hurt us.
- Including irrelevant regressors does not hurt us, but makes our estimator less efficient.

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

イロト 不得 トイラト イラト 一日

Jnbiasednes

OVB

Omitted Variable Bias (OVB)

TABLE 3.2 Summary of Bias in $\tilde{\beta}_1$ When x_2 Is Omitted in Estimating Equation (3.40)		
1111 22310 1	$Corr(x_1, x_2) > 0$	$Corr(x_1, x_2) < 0$
$\beta_2 > 0$	Positive bias	Negative bias
$\beta_2 < 0$	Negative bias	Positive bias

- For instance, if x₂ has a positive effect on y (β₂ > 0) and x₁ and x₂ are positively correlated, then β
 ₁ will be inflated.
- Bias is multiplicative.

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

3

Unbiasednes

OVB

OLS Estimator Variance

Homoskedasticity

MLR Assumption 5: Homoskedastic Errors

Homoskedasticity states $\mathbb{V}[u_i | \boldsymbol{x}_i] = \sigma^2$ for each $i = 1, \dots, n$. Using vectors, $\mathbb{V}[\boldsymbol{u}|X] = \sigma^2 I_n$.

- Under MLR Assumptions 1-5, $\mathbb{V}[u_i] = \mathbb{E}[\mathbb{V}[u_i \mid \boldsymbol{x}_i]] + \mathbb{V}[\mathbb{E}[u_i \mid \boldsymbol{x}_i]] = \mathbb{E}[\sigma^2] = \sigma^2.$
- The variance of our error is constant across all observations when conditioning on our regressors.
- When this assumption fails, we say the errors are heteroskedastic.
 - Really not that important since White's 1980 correction.

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

イロト 不得 トイヨト イヨト 二日

Variance-Covariance Matrix of the OLS Estimator

Theorem 3: Variance-Covariance Matrix of the OLS Estimator

Under MLR Assumptions 1-5, the variance-covariance matrix of the OLS estimator is given by

$$\mathbb{V}\left[\widehat{\boldsymbol{\beta}} \mid X\right] = \sigma^2 \left(X'X\right)^{-1}.$$

• By the law of total variance, $\mathbb{V}\left[\widehat{\boldsymbol{\beta}}\right] = \sigma^2 \left(X'X\right)^{-1}$.

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

イロト イポト イヨト イヨト

Proof 2: Variance-Covariance Matrix of the OLS Estimator

$$\mathbb{V}\left[\widehat{\boldsymbol{\beta}} \mid X\right]$$
$$= \mathbb{V}\left[\boldsymbol{\beta} + \left(X'X\right)^{-1}X'\boldsymbol{u} \mid X\right]$$

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

イロト イボト イヨト イヨト

Proof 2: Variance-Covariance Matrix of the OLS Estimator

$$\mathbb{V}\left[\widehat{\boldsymbol{\beta}} \mid X\right]$$

= $\mathbb{V}\left[\boldsymbol{\beta} + (X'X)^{-1}X'\boldsymbol{u} \mid X\right]$
= $\mathbb{V}\left[\boldsymbol{\beta} \mid X\right] + \mathbb{V}\left[(X'X)^{-1}X'\boldsymbol{u} \mid X\right] + 2\mathsf{Cov}\left[\boldsymbol{\beta}, (X'X)^{-1}X'\boldsymbol{u} \mid X\right]$

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

3

イロト イポト イヨト イヨト

Proof 2: Variance-Covariance Matrix of the OLS Estimator

$$\mathbb{V}\left[\widehat{\boldsymbol{\beta}} \mid X\right]$$

= $\mathbb{V}\left[\boldsymbol{\beta} + (X'X)^{-1}X'\boldsymbol{u} \mid X\right]$
= $\mathbb{V}\left[\boldsymbol{\beta} \mid X\right] + \mathbb{V}\left[(X'X)^{-1}X'\boldsymbol{u} \mid X\right] + 2\mathbb{Cov}\left[\boldsymbol{\beta}, (X'X)^{-1}X'\boldsymbol{u} \mid X\right]$
= $\mathbb{V}\left[(X'X)^{-1}X'\boldsymbol{u} \mid X\right]$

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

Proof 2: Variance-Covariance Matrix of the OLS Estimator

$$\mathbb{V}\left[\widehat{\boldsymbol{\beta}} \mid X\right]$$

= $\mathbb{V}\left[\boldsymbol{\beta} + (X'X)^{-1} X'\boldsymbol{u} \mid X\right]$
= $\mathbb{V}\left[\boldsymbol{\beta} \mid X\right] + \mathbb{V}\left[(X'X)^{-1} X'\boldsymbol{u} \mid X\right] + 2 \mathbb{Cov}\left[\boldsymbol{\beta}, (X'X)^{-1} X'\boldsymbol{u} \mid X\right]$
= $\mathbb{V}\left[(X'X)^{-1} X'\boldsymbol{u} \mid X\right]$
= $(X'X)^{-1} X'\mathbb{V}\left[\boldsymbol{u} \mid X\right] X (X'X)^{-1}$

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

Proof 2: Variance-Covariance Matrix of the OLS Estimator

$$\mathbb{V}\left[\widehat{\boldsymbol{\beta}} \mid X\right]$$

= $\mathbb{V}\left[\boldsymbol{\beta} + (X'X)^{-1}X'\boldsymbol{u} \mid X\right]$
= $\mathbb{V}\left[\boldsymbol{\beta} \mid X\right] + \mathbb{V}\left[(X'X)^{-1}X'\boldsymbol{u} \mid X\right] + 2\text{Cov}\left[\boldsymbol{\beta}, (X'X)^{-1}X'\boldsymbol{u} \mid X\right]$
= $\mathbb{V}\left[(X'X)^{-1}X'\boldsymbol{u} \mid X\right]$
= $(X'X)^{-1}X'\mathbb{V}\left[\boldsymbol{u} \mid X\right]X(X'X)^{-1}$
= $(X'X)^{-1}X'\sigma^{2}I_{n}X(X'X)^{-1}$

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

Proof 2: Variance-Covariance Matrix of the OLS Estimator

$$\mathbb{V}\left[\widehat{\boldsymbol{\beta}} \mid X\right]$$

$$= \mathbb{V}\left[\boldsymbol{\beta} + (X'X)^{-1}X'\boldsymbol{u} \mid X\right]$$

$$= \mathbb{V}\left[\boldsymbol{\beta} \mid X\right] + \mathbb{V}\left[(X'X)^{-1}X'\boldsymbol{u} \mid X\right] + 2\mathsf{Cov}\left[\boldsymbol{\beta}, (X'X)^{-1}X'\boldsymbol{u} \mid X\right]$$

$$= \mathbb{V}\left[(X'X)^{-1}X'\boldsymbol{u} \mid X\right]$$

$$= (X'X)^{-1}X'\mathbb{V}\left[\boldsymbol{u} \mid X\right]X(X'X)^{-1}$$

$$= (X'X)^{-1}X'\sigma^{2}I_{n}X(X'X)^{-1}$$

$$= \sigma^{2}(X'X)^{-1}X'X(X'X)^{-1}$$

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

Proof 2: Variance-Covariance Matrix of the OLS Estimator

$$\begin{aligned} &\mathbb{V}\left[\widehat{\boldsymbol{\beta}} \mid X\right] \\ &= \mathbb{V}\left[\boldsymbol{\beta} + (X'X)^{-1} X'\boldsymbol{u} \mid X\right] \\ &= \mathbb{V}\left[\boldsymbol{\beta} \mid X\right] + \mathbb{V}\left[(X'X)^{-1} X'\boldsymbol{u} \mid X\right] + 2\mathsf{Cov}\left[\boldsymbol{\beta}, (X'X)^{-1} X'\boldsymbol{u} \mid X\right] \\ &= \mathbb{V}\left[(X'X)^{-1} X'\boldsymbol{u} \mid X\right] \\ &= (X'X)^{-1} X'\mathbb{V}\left[\boldsymbol{u} \mid X\right] X (X'X)^{-1} \\ &= (X'X)^{-1} X'\sigma^{2} I_{n} X (X'X)^{-1} \\ &= \sigma^{2} (X'X)^{-1} X'X (X'X)^{-1} \\ &= \sigma^{2} (X'X)^{-1}. \quad \Box \end{aligned}$$

Hooray!

Estimator of the Variance of the OLS Estimator

Theorem 4: Estimator of the Variance-Covariance Matrix of the OLS Estimator

Under MLR Assumption 1-5, since $\hat{\sigma}^2 = \frac{\hat{u}'\hat{u}}{n-k}$ is an unbiased estimator for σ^2 ,

$$\widehat{\mathbb{V}}\left[\widehat{\boldsymbol{\beta}} \mid X\right] = \widehat{\sigma}^2 \left(X'X\right)^{-1}$$

is unbiased estimator for $\mathbb{V}\left[\widehat{\boldsymbol{\beta}} \mid X\right]$.

• k is the number of regressors in our model (including the intercept).

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Inbiasednes

OVB

OLS Estimator Variance

Standard Errors

Definition 6: Standard Errors of OLS Estimates

The standard errors of our OLS estimators are the square roots of the elements along the diagonal of the estimated variance-covariance matrix $\widehat{\mathbb{V}}\left[\widehat{\boldsymbol{\beta}} \mid X\right] = \widehat{\sigma}^2 (X'X)^{-1}$.

• The standard error of an estimator is simply its estimated standard deviation.

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

< □ > < □ > < □ > < □ > < □ > < □ >

OVB

OLS Estimator Variance

Why Do We Like OLS?

Question 2

Why do we like OLS so much?

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

3

イロト イヨト イヨト イヨト

OVB

OLS Estimator Variance

Why Do We Like OLS?

Question 2

Why do we like OLS so much?

Answer to Question 2

There are plenty of unbiased estimators, but under Assumptions 1-5 OLS is efficient, i.e.,

 $\mathbb{V}\left[\widehat{\boldsymbol{\beta}} \mid X\right] \leq \mathbb{V}\left[\widetilde{\boldsymbol{\beta}} \mid X\right]$

for all other unbiased estimators $\tilde{\beta}$.

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

イロト 不得 トイヨト イヨト 二日

Unbiasedness

OVB

OLS Estimator Variance

Property 1: OLS is BLUE Under MLR Assumptions 1-5, OLS is BLUE: Best Smallest variance of any other unbiased estimator Linear Unbiased Estimator

• The Gauss-Markov Theorem proves this.

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

イロト イボト イヨト イヨト

OVB

OLS Estimator Variance

The Gauss-Markov Theorem

Theorem 5: The Gauss-Markov Theorem

Under MLR Assumptions 1-5, OLS is **BLUE** meaning

$$\mathbb{V}\left[\widehat{oldsymbol{eta}}
ight] \leq \mathbb{V}\left[\widetilde{oldsymbol{eta}}
ight]$$

for all other unbiased estimators $\tilde{\beta}$.

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

Proof 3: The Gauss-Markov Theorem Part 1

Let $\tilde{\boldsymbol{\beta}}$ be another linear and unbiased estimator of $\boldsymbol{\beta}$ for the model $\boldsymbol{y} = X\boldsymbol{\beta} + \boldsymbol{u}$. This implies we can write this estimator as $\tilde{\boldsymbol{\beta}} = C\boldsymbol{y}$. Furthermore, under MLR Assumption 4 it is necessarily unbiased because $\mathbb{E}\left[\tilde{\boldsymbol{\beta}}\right] = C\mathbb{E}[\boldsymbol{y}] = CX\boldsymbol{\beta}$ which holds only when CX = I.

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

< 日 > < 同 > < 三 > < 三 > <

Then,

William Brasic

Multiple Linear Regression

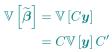
Introduction to Econometrics: ECON 418-518

3

(日)

Proof 3: The Gauss-Markov Theorem Part 2

Then,



William Brasic

Multiple Linear Regression

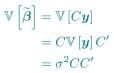
Introduction to Econometrics: ECON 418-518

3

(日)

Proof 3: The Gauss-Markov Theorem Part 2

Then,



William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

3

Proof 3: The Gauss-Markov Theorem Part 2

Then,

$$\mathbb{V}\left[\widetilde{\boldsymbol{\beta}}\right] = \mathbb{V}\left[C\boldsymbol{y}\right]$$
$$= C\mathbb{V}\left[\boldsymbol{y}\right]C'$$
$$= \sigma^2 CC'$$
$$\geq \sigma^2 C P_X C'$$

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

∃ \$\000

Proof 3: The Gauss-Markov Theorem Part 2

Then,

$$\mathbb{V}\left[\widetilde{\boldsymbol{\beta}}\right] = \mathbb{V}\left[C\boldsymbol{y}\right]$$
$$= C\mathbb{V}\left[\boldsymbol{y}\right]C'$$
$$= \sigma^2 CC'$$
$$\geq \sigma^2 CP_X C'$$
$$= \sigma^2 CX(X'X)^{-1}X'C'$$

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

3

Proof 3: The Gauss-Markov Theorem Part 2

Then,

$$\mathbb{V}\left[\widetilde{\boldsymbol{\beta}}\right] = \mathbb{V}\left[C\boldsymbol{y}\right]$$
$$= C\mathbb{V}\left[\boldsymbol{y}\right]C'$$
$$= \sigma^2 CC'$$
$$\geq \sigma^2 CP_X C'$$
$$= \sigma^2 CX(X'X)^{-1}X'C'$$
$$= \sigma^2 (X'X)^{-1}$$

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

э.

 \mathbb{V}

The Gauss-Markov Theorem

Proof 3: The Gauss-Markov Theorem Part 2

Then,

$$\begin{split} \left[\widetilde{\boldsymbol{\beta}} \right] &= \mathbb{V} \left[C \boldsymbol{y} \right] \\ &= C \mathbb{V} \left[\boldsymbol{y} \right] C' \\ &= \sigma^2 C C' \\ &\geq \sigma^2 C P_X C' \\ &= \sigma^2 C X (X'X)^{-1} X' C' \\ &= \sigma^2 (X'X)^{-1} \\ &= \mathbb{V} \left[\widehat{\boldsymbol{\beta}} \right]. \end{split}$$

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

3

イロン イ理 とくほとう ほとう

Jnbiasednes

OVB

OLS Estimator Variance

The Gauss-Markov Theorem

Proof 3: The Gauss-Markov Theorem Part 2

Then,

$$\mathbb{V}\left[\widetilde{\boldsymbol{\beta}}\right] = \mathbb{V}\left[C\boldsymbol{y}\right]$$
$$= C\mathbb{V}\left[\boldsymbol{y}\right]C'$$
$$= \sigma^2 CC'$$
$$\geq \sigma^2 CP_X C'$$
$$= \sigma^2 CX(X'X)^{-1}X'C'$$
$$= \sigma^2 (X'X)^{-1}$$
$$= \mathbb{V}\left[\widehat{\boldsymbol{\beta}}\right].$$

Thus, $\mathbb{V}\left[\widetilde{\boldsymbol{\beta}}\right] \geq \mathbb{V}\left[\widehat{\boldsymbol{\beta}}\right]$.

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

Proof 3: The Gauss-Markov Theorem Part 3

Showing $\sigma^2 CC' \geq \sigma^2 CP_X C'$ amounts to showing $\sigma^2 CC' - \sigma^2 CP_X C' \geq 0$, i.e., this matrix is positive semi-definite. A matrix A is positive semi-definite if for any non-zero vector v it follows that $v'Av \geq 0$. Define $A = I - P_X = I - X(X'X)^{-1}X'$. Then,

$$\boldsymbol{v}'(\sigma^2 C C' - \sigma^2 C P_X C') \boldsymbol{v} = \boldsymbol{v}'(CAC') \boldsymbol{v}$$

= $(C' \boldsymbol{v})' A(C' \boldsymbol{v})$
= $(C' \boldsymbol{v})' A' A(C' \boldsymbol{v})$
= $(AC' \boldsymbol{v})' (AC' \boldsymbol{v})$
> 0

where $(AC'v)'(AC'v) \ge 0$ because the dot product between two identical vectors must be at least zero.

Thank You!

William Brasic

Multiple Linear Regression

Introduction to Econometrics: ECON 418-518

2

イロト イヨト イヨト イヨト