Inference

William Brasic

The University of Arizona

William Brasic

Inference

Inference

Definition 1: Inference

Inference is the process of drawing conclusions about a population's characteristics based on the sample data.

- We conduct inference by performing hypothesis tests and constructing confidence intervals.
- To make inferences in finite samples, we have to make assumptions regarding the sampling distribution of our estimator.

Introduction to Econometrics: ECON 418-518

イロト イボト イヨト イヨト

Normality of Errors

• This assumption implies MLR Assumptions 4 and 5.

Conditional Normality of Outcome

Theorem 1: Conditional Normality of Outcome

Under MLR Assumptions 1-6, for each i = 1, ..., n,

 $y_i \mid \boldsymbol{x}_i \sim \mathbb{N}(\boldsymbol{x}_i'\boldsymbol{\beta}, \sigma^2).$ $\boldsymbol{y} \mid X \sim \mathbb{N}(X\boldsymbol{\beta}, \sigma^2 I_n).$

- y_i is a linear function of a normal random variable, u_i , so y_i is also normal.
- $\mathbb{E}[y_i \mid \boldsymbol{x}_i] = \mathbb{E}[\boldsymbol{x}'_i \boldsymbol{\beta} + u_i \mid \boldsymbol{x}_i] = \boldsymbol{x}'_i \boldsymbol{\beta}.$
- $\mathbb{V}[y_i \mid x_i] = \mathbb{V}[x'_i\beta + u_i \mid x_i] = \sigma^2$ because we treat x_i and β as known and constant, respectively.

Normality of Errors

Question 1

Is the normality assumption of the error term reasonable?

William Brasic

Inference

Normality of Errors

Question 1

Is the normality assumption of the error term reasonable?

Answer to Question 1

Probably not. Some cases where it likely fails is when

- 1. $y_i > 0$ for all observations.
- 2. y_i takes on discrete values (e.g., binary outcome) for all observations.

William Brasic

Inference

Conditional Normality of OLS Estimator

Theorem 2: Conditional Normality of OLS Estimator

Under MLR Assumptions 1-6, for each parameter $j=1,\ldots,k$

$$\widehat{\beta}_j \mid X \sim \mathbb{N}\left(\beta_j, \mathbb{V}\left[\widehat{\beta}_j\right]\right) = \mathbb{N}\left(\beta_j, \left[\sigma^2 (X'X)^{-1}\right]_{jj}\right)$$
$$\widehat{\beta} \mid X \sim \mathbb{N}\left(\beta, \sigma^2 (X'X)^{-1}\right).$$

William Brasic

Inference

Conditional Normality of OLS Estimator

Proof 1: Conditional Normality of OLS Estimator Part 1

Recall we can write $\hat{\beta}$ as

 $\widehat{\boldsymbol{\beta}} = \boldsymbol{\beta} + (X'X)^{-1}X'\boldsymbol{u}.$

Conditional Normality of OLS Estimator

Proof 1: Conditional Normality of OLS Estimator Part 1

Recall we can write $\hat{\beta}$ as

 $\widehat{\boldsymbol{\beta}} = \boldsymbol{\beta} + (X'X)^{-1}X'\boldsymbol{u}.$

Under MLR Assumption 6, $\boldsymbol{u} \sim \mathbb{N}(0, \sigma^2 I_n)$. Since $\hat{\boldsymbol{\beta}}$ is a linear combination of \boldsymbol{u} , the former is also normal.

Conditional Normality of OLS Estimator

Proof 1: Conditional Normality of OLS Estimator Part 1

Recall we can write $\widehat{\beta}$ as

 $\widehat{\boldsymbol{\beta}} = \boldsymbol{\beta} + (X'X)^{-1}X'\boldsymbol{u}.$

Under MLR Assumption 6, $\boldsymbol{u} \sim \mathbb{N}(0, \sigma^2 I_n)$. Since $\widehat{\boldsymbol{\beta}}$ is a linear combination of \boldsymbol{u} , the former is also normal. MLR Assumptions 1-4 then imply OLS is unbiased so $\mathbb{E}\left[\widehat{\boldsymbol{\beta}} \mid X\right] = \boldsymbol{\beta}$ and MLR Assumptions 1-5 imply $\mathbb{V}\left[\widehat{\boldsymbol{\beta}} \mid X\right] = \sigma^2 (X'X)^{-1}$. \Box Hooray!

William Brasic

Inference

Introduction to Econometrics: ECON 418-518

イロト 不得 トイラト イラト 一日

Conditional Standard Normality of OLS Estimator

• Problem: We don't know σ and, consequently, don't know the standard deviation of $\hat{\beta}_i$.

William Brasic

Inference

Introduction to Econometrics: ECON 418-518

イロト 不得 トイヨト イヨト 二日

Student's t-Distribution

Theorem 3: Student's t-Distribution

The T-statistic

$$T = \frac{\widehat{\beta}_j - \beta_j}{\widehat{\sigma}\sqrt{\left[(X'X)^{-1}\right]_{jj}}} = \frac{\widehat{\beta}_j - \beta_j}{\operatorname{se}\left[\widehat{\beta}_j\right]} \sim t_{n-k}$$

follows the Student's t-Distribution with n - k degrees of freedom where k is the number of estimated parameters (intercept included).

- Replace σ with $\hat{\sigma}$ and we go from standard normal distribution to Student's t-Distribution.
- Symmetric around zero and converges to standard normal as degrees of freedom tends to infinity.

William Brasic

Inference

Introduction to Econometrics: ECON 418-518

Student's t-Distribution

Question 2

What is the point of all this? Why do we care about the *T*-statistic? We don't know β_j so we still can't compute it. Aren't we in the same problem as with the standard normal distribution?

William Brasic

Inference

Introduction to Econometrics: ECON 418-518

3

(日)

Student's t-Distribution

Question 2

What is the point of all this? Why do we care about the *T*-statistic? We don't know β_j so we still can't compute it. Aren't we in the same problem as with the standard normal distribution?

Answer to Question 2

Although we don't know β_j , we may interested in the *hypothesis* that it is some value a. Then, we can plug in a for β_j in the T-statistic and carry out this hypothesis test and compute confidence intervals!

William Brasic

Inference

Introduction to Econometrics: ECON 418-518

イロト 不得 トイヨト イヨト 二日

Two-Tailed T-Test

Definition 2: Two-Tailed T-Test

A two-tailed T-Test is a way of testing the null hypothesis H_0 that our true parameter β_j is equal some value a. To conduct a two-tailed T-Test, we:

1. Formulate a hypothesis test of $H_0: \beta_j = a$ versus $H_A: \beta_j \neq a$.

Two-Tailed T-Test

Definition 2: Two-Tailed T-Test

A two-tailed T-Test is a way of testing the null hypothesis H_0 that our true parameter β_j is equal some value a. To conduct a two-tailed T-Test, we:

- 1. Formulate a hypothesis test of $H_0: \beta_j = a$ versus $H_A: \beta_j \neq a$.
- 2. Select a significance level α .

Two-Tailed T-Test

Definition 2: Two-Tailed T-Test

A two-tailed T-Test is a way of testing the null hypothesis H_0 that our true parameter β_j is equal some value a. To conduct a two-tailed T-Test, we:

- 1. Formulate a hypothesis test of $H_0: \beta_j = a$ versus $H_A: \beta_j \neq a$.
- 2. Select a significance level α .

3. Construct the T-statistic
$$T = \frac{\widehat{\beta}_j - a}{\operatorname{se}\left[\widehat{\beta}_j\right]}$$
.

Two-Tailed T-Test

Definition 2: Two-Tailed T-Test

A two-tailed T-Test is a way of testing the null hypothesis H_0 that our true parameter β_j is equal some value a. To conduct a two-tailed T-Test, we:

- 1. Formulate a hypothesis test of $H_0: \beta_j = a$ versus $H_A: \beta_j \neq a$.
- 2. Select a significance level α .
- 3. Construct the T-statistic $T = \frac{\widehat{\beta}_j a}{\operatorname{se}\left[\widehat{\beta}_j\right]}$.
- 4. Find the t-critical value $t_{1-\frac{\alpha}{2},n-k}$ that corresponds to n-k degrees of freedom at the chosen significance level α .

Two-Tailed T-Test

Definition 2: Two-Tailed T-Test

A two-tailed T-Test is a way of testing the null hypothesis H_0 that our true parameter β_j is equal some value a. To conduct a two-tailed T-Test, we:

- 1. Formulate a hypothesis test of $H_0: \beta_j = a$ versus $H_A: \beta_j \neq a$.
- 2. Select a significance level α .
- 3. Construct the T-statistic $T = \frac{\widehat{\beta}_j a}{\operatorname{se}\left[\widehat{\beta}_j\right]}$.
- 4. Find the t-critical value $t_{1-\frac{\alpha}{2},n-k}$ that corresponds to n-k degrees of freedom at the chosen significance level α .
- 5. Reject the null hypothesis if and only if $|T| > t_{1-\frac{\alpha}{2},n-k}$.

3

・ロト ・ 同ト ・ ヨト ・ ヨト

Right-Tailed T-Test

Definition 3: Right-Tailed T-Test

A right-tailed T-Test is a way of testing the null hypothesis H_0 that our true parameter β_j is *less than or equal* to some value a. To conduct a right-tailed T-Test, we:

1. Formulate a hypothesis test of $H_0: \beta_j \leq a$ versus $H_A: \beta_j > a.$

Right-Tailed T-Test

Definition 3: Right-Tailed T-Test

A right-tailed T-Test is a way of testing the null hypothesis H_0 that our true parameter β_j is *less than or equal* to some value a. To conduct a right-tailed T-Test, we:

- 1. Formulate a hypothesis test of $H_0: \beta_j \leq a$ versus $H_A: \beta_j > a.$
- 2. Select a significance level α .

Right-Tailed T-Test

Definition 3: Right-Tailed T-Test

A right-tailed T-Test is a way of testing the null hypothesis H_0 that our true parameter β_j is *less than or equal* to some value a. To conduct a right-tailed T-Test, we:

- 1. Formulate a hypothesis test of $H_0: \beta_j \leq a$ versus $H_A: \beta_j > a.$
- 2. Select a significance level α .

3. Construct the T-statistic
$$T = \frac{\widehat{\beta}_j - a}{\operatorname{se}\left[\widehat{\beta}_j\right]}$$

Right-Tailed T-Test

Definition 3: Right-Tailed T-Test

A right-tailed T-Test is a way of testing the null hypothesis H_0 that our true parameter β_j is *less than or equal* to some value a. To conduct a right-tailed T-Test, we:

- 1. Formulate a hypothesis test of $H_0: \beta_j \leq a$ versus $H_A: \beta_j > a.$
- 2. Select a significance level α .
- 3. Construct the T-statistic $T = \frac{\widehat{\beta}_j a}{\operatorname{se}\left[\widehat{\beta}_j\right]}$.
- 4. Find the t-critical value $t_{1-\alpha,n-k}$ that corresponds to n-k degrees of freedom at the chosen significance level α .

Right-Tailed T-Test

Definition 3: Right-Tailed T-Test

A right-tailed T-Test is a way of testing the null hypothesis H_0 that our true parameter β_j is *less than or equal* to some value a. To conduct a right-tailed T-Test, we:

- 1. Formulate a hypothesis test of $H_0: \beta_j \leq a$ versus $H_A: \beta_j > a.$
- 2. Select a significance level α .
- 3. Construct the T-statistic $T = \frac{\widehat{\beta}_j a}{\operatorname{se}\left[\widehat{\beta}_j\right]}$.
- 4. Find the t-critical value $t_{1-\alpha,n-k}$ that corresponds to n-k degrees of freedom at the chosen significance level α .

5. Reject the null hypothesis if and only if $T > t_{1-\alpha,n-k}$.

3

イロト 不得 トイヨト イヨト

Left-Tailed T-Test

Definition 4: Left-Tailed T-Test

A left-tailed T-Test is a way of testing the null hypothesis H_0 that our true parameter β_j is greater than or equal to some value a. To conduct a left-tailed T-Test, we:

- 1. Formulate a hypothesis test of $H_0: \beta_j \ge a$ versus $H_A: \beta_j < a.$
- 2. Select a significance level α .
- 3. Construct the T-statistic $T = \frac{\widehat{\beta}_j a}{\operatorname{se}\left[\widehat{\beta}_j\right]}$.
- 4. Find the t-critical value $t_{\alpha,n-k}$ that corresponds to n-k degrees of freedom at the chosen significance level α .
- 5. Reject the null hypothesis if and only if $T < t_{\alpha,n-k}$.

3

・ロト ・ 同ト ・ ヨト ・ ヨト

Hypothesis Testing Terminology

Definition 5: Hypothesis Testing Terminology

• Confidence Level: How sure we are of something.

Hypothesis Testing Terminology

- Confidence Level: How sure we are of something.
- Significance Level α : 1 Confidence Level.

Hypothesis Testing Terminology

- Confidence Level: How sure we are of something.
- Significance Level α : 1 Confidence Level.
- Null Hypothesis H_0 : What we assume to be true.

Hypothesis Testing Terminology

- Confidence Level: How sure we are of something.
- Significance Level α : 1 Confidence Level.
- Null Hypothesis H_0 : What we assume to be true.
- Alternative Hypothesis H_A : What we need evidence of.

Hypothesis Testing Terminology

- Confidence Level: How sure we are of something.
- Significance Level α : 1 Confidence Level.
- Null Hypothesis H_0 : What we assume to be true.
- Alternative Hypothesis H_A : What we need evidence of.
- Type 1 Error (False Positive): Rejecting a null hypothesis that is true. α corresponds to the probability we are willing to accept this error.

Hypothesis Testing Terminology

Definition 5: Hypothesis Testing Terminology

- Confidence Level: How sure we are of something.
- Significance Level α : 1 Confidence Level.
- Null Hypothesis H_0 : What we assume to be true.
- Alternative Hypothesis H_A : What we need evidence of.
- Type 1 Error (False Positive): Rejecting a null hypothesis that is true. α corresponds to the probability we are willing to accept this error.
- Type 2 Error (False Negative): Failing to reject a null hypothesis that is false. Corresponds to the power of a test (probability of correctly rejecting a null hypothesis).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

t-Critical Value

Definition 6: t-Critical Value

The t-critical value $t_{1-\frac{\alpha}{2},n-k}$ for a two-tailed test is the value such that the cumulative distribution function, F_T , of a t-distributed random variable, T_{n-k} , with n-k degrees of freedom equals $1-\frac{\alpha}{2}$:

$$F_{T_{n-k}}\left(t_{1-\frac{\alpha}{2},n-k}\right) = \mathbb{P}\left(T_{n-k} \le t_{1-\frac{\alpha}{2},n-k}\right)$$
$$= 1 - \frac{\alpha}{2}.$$

William Brasic

Inference

Introduction to Econometrics: ECON 418-518

(日)

t-Critical Value

Definition 6: t-Critical Value

The t-critical value $t_{1-\frac{\alpha}{2},n-k}$ for a two-tailed test is the value such that the cumulative distribution function, F_T , of a t-distributed random variable, T_{n-k} , with n-k degrees of freedom equals $1-\frac{\alpha}{2}$:

$$F_{T_{n-k}}\left(t_{1-\frac{\alpha}{2},n-k}\right) = \mathbb{P}\left(T_{n-k} \le t_{1-\frac{\alpha}{2},n-k}\right)$$
$$= 1 - \frac{\alpha}{2}.$$

- An analogous process applies for right-tailed and left-tailed tests:
 - For a right-tailed test, the t-critical value $t_{1-\alpha,n-k}$ satisfies $F_{T_{n-k}}(t_{1-\alpha,n-k}) = 1 \alpha$.
 - For a left-tailed test, the t-critical value $t_{\alpha,n-k}$ satisfies $F_{T_{n-k}}(t_{\alpha,n-k}) = \alpha$.

• We use the inverse CDF of the T-distribution to get $t_{1-\frac{\alpha}{2},n-k}$.

William Brasic

nference

Introduction to Econometrics: ECON 418-518

イロト 不得 トイヨト イヨト 二日

T-Test

Confidence Intervals

F-Tests

Definition 7: p-Value

The p-value p corresponding to a test statistic is the smallest level of significance at which the null hypothesis H_0 can be rejected.

William Brasic

Inference

Introduction to Econometrics: ECON 418-518

イロト イポト イヨト イヨト

p-value for T-Test

Example 1: p-value for Two-Tailed T-Test

The p-value p corresponding to a two-tailed test T-test is given by

 $p = 2 * \mathbb{P}(T_{n-k} > |T|)$ = 2 * (1 - F_{T_{n-k}}(|T|)).

where T_{n-k} is a *t*-distributed random variable with degrees of freedom n-k.

- We multiply by two because we are doing a two-tailed test and need the area of both the upper and lower tails.
 - The area in these lower and upper tails is identical because the t-distribution is symmetric around zero.

Economic Versus Statistical Significance

Definition 8: Economic Significance

We say a parameter estimate $\hat{\beta}_j$ is economically significant if it is sufficiently large.

Introduction to Econometrics: ECON 418-518

イロト イポト イヨト イヨト

Economic Versus Statistical Significance

Question 3

Suppose we estimate the model

 $\ln(income_i) = \beta_0 + \beta_1 education_i + \beta_2 experience_i + u_i$

where *income* is a person's yearly income, *education* is measured in years, and *experience* is measured in years.

Suppose $\hat{\beta}_1 = 0.01$ with a p-value of 0.002 and $\hat{\beta}_2 = 0.3$ with a p-value of 0.045. Are these estimates statistically significant at the $\alpha = 0.05$ level. What about economically significant?

William Brasic

Inference

Introduction to Econometrics: ECON 418-518

(日)

Economic Versus Statistical Significance

Answer to Question 3

- 1. $\hat{\beta}_1$ is statistically significant at the $\alpha = 0.05$ level because 0.002 < 0.05. However, it is not economically significant because our model predicts that the effect of an additional year of education only amounts to a person's yearly income increasing by 1%.
- 2. $\hat{\beta}_2$ is statistically significant at the $\alpha = 0.05$ level because 0.045 < 0.05. It is economically significant because our model predicts an additional year of education amounts to a person's yearly income increasing by 30% which is quite a big amount.

William Brasic

Inference

Introduction to Econometrics: ECON 418-518

イロト 不得 トイラト イラト 一日

Confidence Intervals

Theorem 4: Confidence Interval Estimator

The $100(1-\alpha)\%$ confidence interval for a parameter β_j is given by

$$\left[\widehat{\beta}_j - t_{1-\frac{\alpha}{2},n-k} \cdot \mathsf{se}\left(\widehat{\beta}_j\right), \ \widehat{\beta}_j + t_{1-\frac{\alpha}{2},n-k} \cdot \mathsf{se}\left(\widehat{\beta}_j\right)\right].$$

- Same as saying $\widehat{\beta}_j \pm t_{1-\frac{\alpha}{2},n-k} * \operatorname{se}\left[\widehat{\beta}_j\right]$.
- Gives us a region of values we can say the true β_j lies in with $100(1-\alpha)\%$ confidence.
- Confidence interval widens as α increases.

Confidence Intervals

Proof 2: Confidence Interval Estimator Part 1

Let $t_{1-\frac{\alpha}{2},n-k}$ be the critical value for the t-distribution with n-k degrees of freedom. Then, the probability that a t-distributed random variable T_{n-k} with n-k degrees of freedom is greater than $t_{1-\frac{\alpha}{2},n-k}$ is $1-F_{T_{n-k}}(t_{1-\frac{\alpha}{2},n-k})=1-(1-\frac{\alpha}{2})=\frac{\alpha}{2}$. By the symmetry of the t-distribution, we have $F_{T_{n-k}}(-t_{1-\frac{\alpha}{2},n-k})=F_{T_{n-k}}(t_{\frac{\alpha}{2},n-k})=\frac{\alpha}{2}$. Consequently,

$$\begin{aligned} \mathbb{P}(-t_{1-\frac{\alpha}{2},n-k} \leq T_{n-k} \leq t_{1-\frac{\alpha}{2},n-k}) \\ &= F_{T_{n-k}} \left(t_{1-\frac{\alpha}{2},n-k} \right) - F_{T_{n-k}} \left(-t_{1-\frac{\alpha}{2},n-k} \right) \\ &= 1 - \frac{\alpha}{2} - \frac{\alpha}{2} \\ &= 1 - \alpha. \end{aligned}$$

William Brasic

Inference

Confidence Intervals

Proof 2: Confidence Interval Estimator Part 2

We know that $\frac{\widehat{\beta}_j-\beta_j}{\mathrm{se}[\beta_j]}$ is a t-distributed random variable with n-k degrees of freedom. So,

$$\mathbb{P}\left(-t_{1-\frac{\alpha}{2},n-k} \leq \frac{\widehat{\beta}_{j} - \beta_{j}}{\operatorname{se}\left[\widehat{\beta}_{j}\right]} \leq t_{1-\frac{\alpha}{2},n-k}\right)$$
$$= \mathbb{P}\left(-\widehat{\beta}_{j} - t_{1-\frac{\alpha}{2},n-k} \cdot \operatorname{se}\left[\widehat{\beta}_{j}\right] \leq -\beta_{j} \leq -\widehat{\beta}_{j} + t_{1-\frac{\alpha}{2},n-k} \cdot \operatorname{se}\left[\widehat{\beta}_{j}\right]\right)$$
$$= \mathbb{P}\left(\widehat{\beta}_{j} - t_{1-\frac{\alpha}{2},n-k} \cdot \operatorname{se}\left[\widehat{\beta}_{j}\right] \leq \beta_{j} \leq \widehat{\beta}_{j} + t_{1-\frac{\alpha}{2},n-k} \cdot \operatorname{se}\left[\widehat{\beta}_{j}\right]\right)$$
$$= 1 - \alpha.$$

William Brasic

Inference

F-Tests

Confidence Intervals

Proof 2: Confidence Interval Estimator Part 3

Thus, the probability that β_j lies in the interval $\hat{\beta}_j \pm t_{1-\frac{\alpha}{2},n-k}$. se $\left[\hat{\beta}_j\right]$ is $1-\alpha$ meaning we can say with $100(1-\alpha)\%$ confidence that β_j is some number in this interval. \Box Hooray!

William Brasic

Inference

Two-Sided Tests with Confidence Intervals

Property 2: Two-Sided Tests with Confidence Intervals

Suppose we wish to test $H_0: \beta_j = a$ versus $H_A: \beta_j \neq a$ at the α significance level. If a is not contained in the confidence interval

$$\left[\widehat{\beta}_j - t_{1-\frac{\alpha}{2},n-k} \cdot \operatorname{se}\left(\widehat{\beta}_j\right), \ \widehat{\beta}_j + t_{1-\frac{\alpha}{2},n-k} \cdot \operatorname{se}\left(\widehat{\beta}_j\right)\right].$$

then we reject the null hypothesis.

William Brasic

Inference

Introduction to Econometrics: ECON 418-518

Question 4

Suppose we are interested in the model

$$y_i = \boldsymbol{x}_i' \boldsymbol{\beta} + u_i.$$

How do we test H_0 : $\beta_{k-q} = 0 = \ldots = \beta_k = 0$ versus H_A : $\beta_{k-q} \neq 0$ or \ldots or $\beta_k \neq 0$?

Answer to Question 4

Construct an F-Test! How do we do that?

William Brasic

Inference

F-Tests

Unrestricted Model

Definition 9: Unrestricted Model

The unrestricted model is simply the full model:

 $y_i = \boldsymbol{x}_i' \boldsymbol{\beta} + u_i.$

William Brasic

Inference

F-Tests

Restricted Model

Definition 9: Restricted Model

The restricted model assumes the last \boldsymbol{q} parameters are zero so we get

$$y_i = \beta_0 + \beta_1 x_{i,1} + \ldots + \beta_{k-q} x_{i,k-q} + u_i.$$

• The restricted model is "nested" within the unrestricted model because it has a subset of the covariates included in the unrestricted model.

Introduction to Econometrics: ECON 418-518

3

Restricted and Unrestricted Model

Example 2

Suppose we have the unrestricted model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + u_i$$

and we wish to test $H_0:\beta_1=\beta_2=0.$ Then, the restricted model is

$$y_i = \beta_0 + \beta_3 x_{i3} + v_i.$$

William Brasic

<□ ト < □ ト < □ ト < 亘 ト < 亘 ト < 亘 ト Introduction to Econometrics: ECON 418-518

F-Statistic

Theorem 5: F-Statistic

The F-statistic

$$F = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k)} \sim F_{q,n-k}$$

follows an F-distribution with q numerator degrees of freedom and n-k denominator degrees of freedom.

- SSR_r is the SSR from the restricted model.
- *SSR_{ur}* is the *SSR* from the unrestricted model.
- q is the number of restrictions.
- n-k is the number of estimated parameters (intercept included).
- Proof follows from the fact the F-statistic can be written as the ratio of two χ^2 random. variables which necessarily follows an F-Distribution.

William Brasic

Inference

Introduction to Econometrics: ECON 418-518

Definition 10: F-Test

To conduct an F-Test, we:

1. Formulate a hypothesis test of $H_0: \beta_{k-q} = \ldots = \beta_k = 0$ versus $H_A: \beta_{k-q} \neq 0$ or \ldots or $\beta_k \neq 0$.

Definition 10: F-Test

- 1. Formulate a hypothesis test of $H_0: \beta_{k-q} = \ldots = \beta_k = 0$ versus $H_A: \beta_{k-q} \neq 0$ or \ldots or $\beta_k \neq 0$.
- 2. Select a significance level α .

Definition 10: F-Test

- 1. Formulate a hypothesis test of $H_0: \beta_{k-q} = \ldots = \beta_k = 0$ versus $H_A: \beta_{k-q} \neq 0$ or \ldots or $\beta_k \neq 0$.
- 2. Select a significance level α .
- 3. Estimate the unrestricted model to obtain the SSR_{ur} .

Definition 10: F-Test

- 1. Formulate a hypothesis test of $H_0: \beta_{k-q} = \ldots = \beta_k = 0$ versus $H_A: \beta_{k-q} \neq 0$ or \ldots or $\beta_k \neq 0$.
- 2. Select a significance level α .
- 3. Estimate the unrestricted model to obtain the SSR_{ur} .
- 4. Estimate the restricted model to obtain the SSR_r .

Definition 10: F-Test

- 1. Formulate a hypothesis test of $H_0: \beta_{k-q} = \ldots = \beta_k = 0$ versus $H_A: \beta_{k-q} \neq 0$ or \ldots or $\beta_k \neq 0$.
- 2. Select a significance level α .
- 3. Estimate the unrestricted model to obtain the SSR_{ur} .
- 4. Estimate the restricted model to obtain the SSR_r .
- 5. Construct the F-statistic $F = \frac{(SSR_r SSR_{ur})/q}{SSR_{ur}/(n-k)}$.

Definition 10: F-Test

- 1. Formulate a hypothesis test of $H_0: \beta_{k-q} = \ldots = \beta_k = 0$ versus $H_A: \beta_{k-q} \neq 0$ or \ldots or $\beta_k \neq 0$.
- 2. Select a significance level α .
- 3. Estimate the unrestricted model to obtain the SSR_{ur} .
- 4. Estimate the restricted model to obtain the SSR_r .
- 5. Construct the F-statistic $F = \frac{(SSR_r SSR_{ur})/q}{SSR_{ur}/(n-k)}$.
- Find the F-critical value f_{1-α,q,n-k} that corresponds to q numerator degrees of freedom and n - k denominator degrees of freedom at the chosen significance level α.

Definition 10: F-Test

To conduct an F-Test, we:

- 1. Formulate a hypothesis test of $H_0: \beta_{k-q} = \ldots = \beta_k = 0$ versus $H_A: \beta_{k-q} \neq 0$ or \ldots or $\beta_k \neq 0$.
- 2. Select a significance level α .
- 3. Estimate the unrestricted model to obtain the SSR_{ur} .
- 4. Estimate the restricted model to obtain the SSR_r .
- 5. Construct the F-statistic $F = \frac{(SSR_r SSR_{ur})/q}{SSR_{ur}/(n-k)}$.
- Find the F-critical value f_{1-α,q,n-k} that corresponds to q numerator degrees of freedom and n - k denominator degrees of freedom at the chosen significance level α.

7. Reject the null hypothesis if and only if $F > f_{1-\alpha,q,n-k}$.

Definition 11: F-Test Terminology

When we reject the null $H_0: \beta_{k-q} = 0, \ldots, \beta_k = 0$ we say these parameters are jointly significant. When we fail to reject this null, we say these parameters are jointly insignificant.

- When we reject this null hypothesis, we still do not know which of these variables effects the outcome significantly.
 - Perhaps they all do, but maybe only one does. So we must carry out individual T-tests.

William Brasic

Inference

Introduction to Econometrics: ECON 418-518

イロト 不得 トイラト イラト 一日

F-Statistic for Intercept Only Model

Definition 11: F-Statistic for Intercept Only Model

The F-statistic for testing the null hypothesis H_0 : $\beta_1=0,\ldots,\beta_k=0$ is given by

$$F = \frac{R^2/(k-1)}{(1-R^2)/(n-k)}.$$

- This is reported in R's summary() function.
- No need to estimate unrestricted and restricted models to carry out this test.

Introduction to Econometrics: ECON 418-518

(日)

f-Critical Value

Definition 12: f-Critical Value

The f-critical value $f_{1-\alpha,q,n-k}$ for an F-test is the value such that the cumulative distribution function, $F_{f_{q,n-k}}$, of a F-distributed random variable, $f_{q,n-k}$, with q and n-k degrees of freedom equals $1-\alpha$:

$$F_{f_{q,n-k}}\left(f_{1-\alpha,q,n-k}\right) = \mathbb{P}\left(f_{q,n-k} \le f_{1-\alpha,q,n-k}\right)$$
$$= 1 - \alpha.$$

We use the inverse CDF of the F-distribution to get f_{1-α,q,n-k}.

William Brasic

Inference

Introduction to Econometrics: ECON 418-518

イロト 不得下 イヨト イヨト 二日

p-value for F-Test

 No need to multiply by two because the F-distribution only has a right tail.

William Brasic

Inference

Thank You!

William Brasic

Inference