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Linear Probability Model (LPM)

Definition 1: Linear Probability Model (LPM)

A Linear Probability Model (LPM) uses OLS to estimate a model
where the outcome variable yi is binary.

• Outcome could be

▶ Whether an individual graduated college or not.
▶ Whether a firm will hire an individual or not.
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Linear Probability Model (LPM)

Property 1: Linear Probability Model (LPM)

When our outcome yi is binary, under MLR Assumptions 1-4,

E[yi | xi] = P(yi = 1 | xi) = x′
iθ

where the coefficients represent the change in the probability that
yi = 1.
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Linear Probability Model (LPM)

Example 1: Linear Probability Model (LPM)

Suppose upon estimation we get

ŷi = x′
iθ̂ = 0.2− 0.05xi1 + 0.3xi2.

1. For a unit increase is x1, the predicted probability that y = 1
decreases by 0.05.
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Linear Probability Model (LPM)

Example 1: Linear Probability Model (LPM)

Suppose upon estimation we get

ŷi = x′
iθ̂ = 0.2− 0.05xi1 + 0.3xi2.

1. For a unit increase is x1, the predicted probability that y = 1
decreases by 0.05.

2. When x1 = 1 and x2 = 2, the predicted probability that
y = 1 is 0.2− 0.05 + 0.3(2) = 0.75.
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Linear Probability Model (LPM)

Example 1: Linear Probability Model (LPM)

Suppose upon estimation we get

ŷi = x′
iθ̂ = 0.2− 0.05xi1 + 0.3xi2.

1. For a unit increase is x1, the predicted probability that y = 1
decreases by 0.05.

2. When x1 = 1 and x2 = 2, the predicted probability that
y = 1 is 0.2− 0.05 + 0.3(2) = 0.75.

3. When x1 = 1 and x2 = 3, the predicted probability that
y = 1 is 0.2− 0.05 + 0.3(3) = 0.75 = 1.05. (huh?)
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Linear Probability Model (LPM)

Property 2: Linear Probability Model (LPM)

Economists and statisticians typically stay away from the LPM be-
cause:

• Predicted probabilities are not bounded in the unit interval.

• When yi is binary, V[ui|xi] = x′
iθ(1− x′

iθ).

▶ Not too big of a problem because of HCSE.

• How should we estimate a model when the outcome is binary then?
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Maximum Likelihood Estimation (MLE)

Question 1

Throughout the semester we’ve used OLS which generates a nice
closed-form solution. However, when the model is non-linear in
parameters, we can’t use OLS to solve for the parameter estimates.
What estimation strategy should we use in this case then?

Answer to Question 1

Maximum Likelihood Estimation (MLE)!
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Maximum Likelihood Estimation (MLE)

Definition 2: Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation (MLE) is a method used for es-
timating the parameters of a statistical model. Given a set of
observations, MLE seeks to find the parameter values that maxi-
mize the likelihood function, which measures the probability of the
observed data under the model.

• Intuition is that we want to find the parameters that maximize the
likelihood of observing the data we did observe as then we likely
have parameters close to ones that truly generated our data!
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MLE Fundamental Probability Property

Property 3: MLE Fundamental Probability Property

Following from basic probability rules,

fY,X(yi,xi;θ) = fY |X(yi | xi;θ) · fX(xi).

• Recall that P(Y = y,X = x) = P(Y = y | X = x)P(X = x). This
is where the above comes from.

• θ is the (k + 1)× 1 vector of true parameters we want to estimate.

• xi assumed to be given exogenously and, thus, not depend on θ,
but some other set of parameters we don’t care about.
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MLE Fundamental Probability Property

Property 4: MLE Fundamental Probability Property

Following from basic probability rules, if {yi,xi}ni=1 represent a
random sample where zi = (yi,xi) (a specific data point), then
the joint distribution is a product of the marginal distributions:

fZ1,...,Zn
(zi, . . . ,zi;θ) =

n∏
i=1

f(zi;θ).

• Think about it has the probability of observing our sample.
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Likelihood Function

Definition 3: Likelihood Function

Under random sampling, the likelihood function is defined as

ln(θ) =

n∏
i=1

f(zi;θ).
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Log-Likelihood Function

Definition 4: Log-Likelihood Function

Under random sampling, the log-likelihood function is defined as

Ln(θ) = ln (ln(θ))

= ln

(
n∏

i=1

f(zi;θ)

)

=

n∑
i=1

ln f(zi;θ).

• We take the log because its easier to differentiate.

• Remember the log of a product is the sum of the logs!
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Maximum Likelihood Estimator (MLE)

Definition 5: Maximum Likelihood Estimator (MLE)

Under random sampling, the maximum likelihood estimator (MLE)
is defined as

θ̂ = argmax
θ

Ln(θ).

• The MLE is the vector of parameters that maximizes are likelihood
function!
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Maximum Likelihood Estimator (MLE)

Theorem 1: Maximum Likelihood Estimator (MLE)

Under random sampling, the maximum likelihood estimator (MLE)
obtained by maximizing the likelihood function and the log-
likelihood function are identical.

• Log of a function is a strictly increasing transformation which
preserves the location of the maximum.
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Maximum Likelihood Estimator (MLE)

William Brasic Binary Response Models Introduction to Econometrics: ECON 418-518



LPM MLE BRM

Maximum Likelihood Estimator (MLE)

Property 5: Maximum Likelihood Estimator (MLE)

θ̂ = argmax
θ

n∑
i=1

ln f(zi;θ)
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Maximum Likelihood Estimator (MLE)

Property 5: Maximum Likelihood Estimator (MLE)

θ̂ = argmax
θ

n∑
i=1

ln f(zi;θ)

= argmax
θ

[
n∑

i=1

ln
(
fY |X(yi | xi;θ) · fX(xi)

)]
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Maximum Likelihood Estimator (MLE)

Property 5: Maximum Likelihood Estimator (MLE)

θ̂ = argmax
θ

n∑
i=1

ln f(zi;θ)

= argmax
θ

[
n∑

i=1

ln
(
fY |X(yi | xi;θ) · fX(xi)

)]

= argmax
θ

[
n∑

i=1

ln
(
fY |X(yi | xi;θ)

)
+

n∑
i=1

ln (fX(xi))

]
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Maximum Likelihood Estimator (MLE)

Property 5: Maximum Likelihood Estimator (MLE)

θ̂ = argmax
θ

n∑
i=1

ln f(zi;θ)

= argmax
θ

[
n∑

i=1

ln
(
fY |X(yi | xi;θ) · fX(xi)

)]

= argmax
θ

[
n∑

i=1

ln
(
fY |X(yi | xi;θ)

)
+

n∑
i=1

ln (fX(xi))

]

= argmax
θ

[
n∑

i=1

ln
(
fY |X(yi | xi;θ)

)]
.
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Maximum Likelihood Estimator (MLE)

Theorem 2: Maximum Likelihood Estimator (MLE) Proper-
ties

Under reasonable technical assumptions (beyond the scope of this
class), the MLE is:

1. Consistent

2. Asymptotically normal

3. Asymptotically efficient

• All the properties (besides unbiasedness) we loved about OLS!
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Maximum Likelihood Estimator (MLE)

Theorem 3: Maximum Likelihood Estimator (MLE) Proper-
ties

Under MLR Assumptions 1-6, the MLE for a linear regression model
is identical to that produced by OLS.

• MLR Assumption 6 implies the distribution of the outcome given the
covariates is normally distributed. Then, we set up the log-likelihood
function using the normal PDF, take the first order condition with
respect to θ, and solve for it getting θ̂ = (X ′X)−1X ′y.
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Maximum Likelihood Estimator (MLE)

Property 6: Pro and Con of MLE

1. Pro: We can now solve non-linear problems that don’t have
a nice closed form solution.

2. Con: Have to specify some functional form of the underlying
data generating distribution.

▶ Could lead to a misspecification issue and we don’t get
the estimates we truly want.
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Latent and Observed Variable

Definition 6: Latent and Observed Variable

A latent variable y∗i = x′
iθ + ϵi is what we don’t observe. In a

binary response model (BRM), we observe yi = 1(y∗i > 0).

• y∗i could be wage and yi could be whether or not the wage is above
50K.

• yi is a binary variable.
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Expectation of the Observed Outcome

Definition 7: Expectation of the Observed Outcome

Assuming ϵi and xi are statistically independent and the CDF of
the error ϵi is given by G, the expectation of the observed outcome
is given by

E[yi | xi] = fY |X(yi = 1 | xi;θ)
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Expectation of the Observed Outcome

Definition 7: Expectation of the Observed Outcome

Assuming ϵi and xi are statistically independent and the CDF of
the error ϵi is given by G, the expectation of the observed outcome
is given by

E[yi | xi] = fY |X(yi = 1 | xi;θ)

= P(yi = 1 | xi)
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Expectation of the Observed Outcome

Definition 7: Expectation of the Observed Outcome

Assuming ϵi and xi are statistically independent and the CDF of
the error ϵi is given by G, the expectation of the observed outcome
is given by

E[yi | xi] = fY |X(yi = 1 | xi;θ)

= P(yi = 1 | xi)

= P(y∗i > 0 | xi)
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Expectation of the Observed Outcome

Definition 7: Expectation of the Observed Outcome

Assuming ϵi and xi are statistically independent and the CDF of
the error ϵi is given by G, the expectation of the observed outcome
is given by

E[yi | xi] = fY |X(yi = 1 | xi;θ)

= P(yi = 1 | xi)

= P(y∗i > 0 | xi)

= P(x′
iθ + ϵi > 0 | xi)
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Expectation of the Observed Outcome

Definition 7: Expectation of the Observed Outcome

Assuming ϵi and xi are statistically independent and the CDF of
the error ϵi is given by G, the expectation of the observed outcome
is given by

E[yi | xi] = fY |X(yi = 1 | xi;θ)

= P(yi = 1 | xi)

= P(y∗i > 0 | xi)

= P(x′
iθ + ϵi > 0 | xi)

= P(ϵi > −x′
iθ | xi)
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Expectation of the Observed Outcome

Definition 7: Expectation of the Observed Outcome

Assuming ϵi and xi are statistically independent and the CDF of
the error ϵi is given by G, the expectation of the observed outcome
is given by

E[yi | xi] = fY |X(yi = 1 | xi;θ)

= P(yi = 1 | xi)

= P(y∗i > 0 | xi)

= P(x′
iθ + ϵi > 0 | xi)

= P(ϵi > −x′
iθ | xi)

= P(ϵi ≤ x′
iθ | xi)
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Expectation of the Observed Outcome

Definition 7: Expectation of the Observed Outcome

Assuming ϵi and xi are statistically independent and the CDF of
the error ϵi is given by G, the expectation of the observed outcome
is given by

E[yi | xi] = fY |X(yi = 1 | xi;θ)

= P(yi = 1 | xi)

= P(y∗i > 0 | xi)

= P(x′
iθ + ϵi > 0 | xi)

= P(ϵi > −x′
iθ | xi)

= P(ϵi ≤ x′
iθ | xi)

= G(x′
iθ).
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PDF of Binary Variable

Definition 8: PDF of Binary Variable

• fY |X(yi = 1 | xi;θ) = G(x′
iθ).

• fY |X(yi = 0 | xi;θ) = 1−fY |X(yi = 1 | xi;θ) = 1−G(x′
iθ).

So, the conditional distribution of yi given xi is

fY |X(yi | xi;θ) = G(x′
iθ)

yi [1−G(x′
iθ)]

1−yi .

• Now we can set up our log-likelihood function for any G and use
numerical methods (beyond the scope of this class) to solve for θ̂!

▶ Newton’s Method is one numerical solver.
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ML for BRM

Definition 9: ML for BRM

The log-likelihood function for a BRM is given by

Ln(θ) =

n∑
i=1

ln fY |X(yi | xi;θ)

=

n∑
i=1

ln
(
G(x′

iθ)
yi [1−G(x′

iθ)]
1−yi

)
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ML for BRM

Definition 9: ML for BRM

The log-likelihood function for a BRM is given by

Ln(θ) =

n∑
i=1

ln fY |X(yi | xi;θ)

=

n∑
i=1

ln
(
G(x′

iθ)
yi [1−G(x′

iθ)]
1−yi

)
=

1

n

n∑
i=1

[yi lnG(x′
iθ) + (1− yi) ln [1−G(x′

iθ)]] .
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Linear Probability Model

Definition 10: Linear Probability Model

When we assume G is the uniform CDF over the unit interval so
G(x′

iθ) = x′
iθ, we have

E[yi | xi] = G(x′
iθ) = x′

iθ.

• We get the LPM!

• Estimation by MLE or OLS will yield identical estimates of θ.
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Probit Model

Definition 11: Probit Model

When we assume G is the standard normal CDF so G = Φ we get

Φ(x′
iθ) =

1√
2π

∫ x′
iβ

−∞
exp

(
−u2

2

)
du,

the so-called probit model.

• Must lie within the unit interval alleviating concern of LPM!
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Logit Model

Definition 12: Logit Model

When we assume G is the logistic CDF so G = Λ we get

Λ(x′
iθ) =

exp (x′
iθ)

1 + exp (x′
iθ)

,

the so-called logit model.

• Must lie within the unit interval alleviating concern of LPM!

• Often also called the logistic regression model.
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Partial Effects

Definition 13: Partial Effects

Assuming G is either the logistic or standard normal CDFs, the
partial effect of:

1. A continuous xj on the probability that yi = 1 is

∂P(yi = 1 | x)
∂xj

=
∂G(x′

iθ)

∂xj
= g(x′

iθ)θj .

2. A binary x1 on the probability that yi = 1 is

G(θ0 + θ1 + θ2x2 + . . . θkxk)−G(θ0 + θ2x2 + . . . θkxk).
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Partial Effects

Definition 13: Partial Effects

Assuming G is either the logistic or standard normal CDFs, the
partial effect of:

1. A continuous xj on the probability that yi = 1 is

∂P(yi = 1 | x)
∂xj

=
∂G(x′

iθ)

∂xj
= g(x′

iθ)θj .

2. A binary x1 on the probability that yi = 1 is

G(θ0 + θ1 + θ2x2 + . . . θkxk)−G(θ0 + θ2x2 + . . . θkxk).
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Estimated Average Marginal Effect (AME)

Definition 14: Estimated Average Marginal Effect (AME)

The estimated average marginal effect (AME) of xj on the proba-
bility that yi = 1 is a summary measure of the partial effect of xj

given by

θ̂j

[
1

n

n∑
i=1

g
(
x′
iθ̂
)]

.
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Single Hypothesis Tests

Definition 15: Single Hypothesis Tests

The test statistic for any hypothesis test when using the logit or
probit models is the same as when using OLS with or without a
binary outcome:

T =
θ̂j − a

se [θj ]

where a is the number we are testing θj against.

• Once forming the test statistic, we carry out single hypothesis tests
as usual.
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Multiple Hypothesis Tests

Definition 16: Multiple Hypothesis Tests

When testing multiple restrictions, two common test statistics are:

1. The Wald test statistic (complex formula beyond the scope
of this class).

2. The likelihood ratio test statistic
LR = 2

[
Ln

(
θ̂UR

)
− Ln

(
θ̂R

)]
.

• The LR statistic can be calculated by running probit/logit models
for each of the two specifications.

• Both test statistics have an asymptotic χ2
q distribution where q is

the number of restrictions.
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Thank You!
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