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Summation Operator

Definition 1: Summation Operator

The summation operator

n∑
i=1

is a convenient way of expressing summations.

• The i = 1 means we start from index i = 1.

• The n means we sum until i = n.

•
∑
i∈A

means we only sum over the indices contained in A.
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Properties of the Summation Operator
Property 1: Summation Operator

1.
n∑

i=1

xi = x1 + x2 + . . .+ xn.

2.
n∑

i=1

c = c+ c+ . . .+ c︸ ︷︷ ︸
n times

= n · c.

3.
n∑

i=1

cxi = c

n∑
i=1

xi.

4.
n∑

i=1

(axi + byi) = a

n∑
i=1

xi + b

n∑
i=1

yi.

5.
n∑

i=1

xi

yi
̸=
∑n

i=1 xi∑n
i=1 yi

.
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Linear Functions

Definition 2: Linear Function

A variable y is a linear function of a single variable x if

y = β0 + β1x.

• β0 is the intercept.

• β1 is the slope.
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Non-Linear Functions

Definition 3: Non-Linear Function

A variable y is a non-linear function of a single variable x if

y = f(x).

• f(x) could be x2,
√
x, ex, etc.
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The Natural Logarithm Function

Definition 4: The Natural Logarithm Function

The natural logarithm is a function defined as y = ln(x).
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The Natural Logarithm

Property 2: Natural Logarithm

1. ln(x) is only defined for x > 0.

2. ln(x) < 0, for 0 < x < 1.

3. ln(1) = 0.

4. ln(x) > 0, for x > 1.

5. ln

(
n∏

i=1

xi

)
=

n∑
i=1

ln(xi), for x1, . . . , xn > 0.

6. ln

(
x1

x2

)
= ln(x1)− ln(x2), for x1, x2 > 0.

7. ln (xc) = c ln(x), for x > 0 and for any number c.
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The Natural Logarithm

Example 1: Example of Property 2.5

Consider three variables x1, x2, and x3 all greater than zero. Then,

ln

(
3∏

i=1

xi

)
= ln (x1 ∗ x2 ∗ x3)

= ln(x1) + ln(x2) + ln(x3)

=

3∑
i=1

ln(xi).
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Differential Calculus

Definition 5: Derivative

The derivative represents how a function changes as its inputs
change. Formally, it represents the rate of change or the slope
of a function at a particular point.

• We denote the derivative of the function f with respect to x as
df(x)
dx .
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Differential Calculus

Property 3: Differential Calculus

Suppose f is a function and x is a variable.

1. If f is not a function of x, then df(x)
dx = 0.

2. If f(x) = x, then df(x)
dx = 1.

3. If f(x) = xa, then df(x)
dx = axa−1.

4. If f(x) = ln(x), then df(x)
dx = 1

x .

5. If f(x) = c+ x for any constant c, then df(x)
dx = 1.

6. If f(x) = cx for any constant c, then df(x)
dx = c.
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Partial Differentiation

Definition 6: Partial Derivative

The partial derivative is a derivative taken with respect to one
variable while holding the other variables constant. It measures
the rate of change of a function with respect to one of its variables
in a multivariable function.

• We denote the partial derivative of the multivariable function f with

respect to one of its arguments x1 as ∂f(x1,...,xn)
∂x1

.
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Partial Differentiation

Question 1: Partial Differentiation

Suppose y = β0 + β1x1 + β2x2 + β3x1x2.

∂y

∂x2
= ?

Answer to Question 1

∂y

∂x2
= β2 + β3x1.
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First Order Condition

Definition 7: First Order Condition

The first order condition for maximizing or minimizing a function
is that the partial derivatives of the function with respect to all
variables must be equal to zero. Mathematically, for a function
f(x1, x2, . . . , xn), this means:

∂f

∂x1
= 0,

∂f

∂x2
= 0, . . . ,

∂f

∂xn
= 0.

• This condition is necessary for finding local maximum/minimum
points of the function.

• Upon setting these derivatives equal to zero, we then solve for the
variable in question to determine its function
maximizing/minimizing value.
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Why Do We Need Statistics in Econometrics?

Question 3: Why Do We Need Statistics in Econometrics?

What purpose does statistics serve in econometric analysis?

Answer to Question 3

We want to obtain a point estimate of a parameter and statistics
provides estimation methods. After obtaining a point estimate, we
can obtain confidence intervals that allow us to conduct hypothesis
tests to determine the significance of that parameter.
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Sample

Definition 8: Sample

A sample x1, . . . , xn = {xi}ni=1 of n observations is a subset of a
population used to represent the entire group as a whole.

• A sample is used to make inferences about the population.

• A well-chosen sample should accurately reflect the characteristics of
the population (the entire pool of observations we can select a
sample from).

• A sample is said to be random if each observation has an equal
probability of being selected.
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Descriptive Statistics

Definition 9: Descriptive Statistics

Descriptive statistics involve summarizing and organizing our sam-
ple data so it can be easily understood.

• Common descriptive statistics include mean, median, variance, and
standard deviation.
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Sample Mean

Definition 10: Sample Mean

The sample mean (average) of a sample {xi}ni=1 is

X =
1

n

n∑
i=1

xi = n−1
n∑

i=1

xi.

• The mean is a measure of central tendency.

• X attempts to estimate the population mean µ.

• The mean is sensitive to outliers, which can skew the result.
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Sample Variance

Definition 11: Sample Variance

The sample variance σ̂2 of a sample {xi}ni=1 is defined as

σ̂2 =
1

n− 1

n∑
i=1

(
xi −X

)2
and represents how dispersed our data is.

• σ̂2 attempts to estimate the population variance σ2.
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Sample Standard Deviation

Definition 12: Standard Deviation

The sample standard deviation σ̂ of a sample {xi}ni=1 is defined as

σ̂ =
√
σ̂2 =

√√√√ 1

n− 1

n∑
i=1

(
xi −X

)2
and is a standardized version of how dispersed our data is.

• σ̂ attempts to estimate the population standard deviation σ.
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Sample Covariance

Definition 13: Sample Covariance

The sample covariance of a sample {(xi, yi)}ni=1 is

σ̂xy =
1

n− 1

n∑
i=1

(
xi −X)(yi − Y

)
.
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Sample Correlation

Definition 14: Sample Correlation

The sample correlation of a sample {(xi, yi)}ni=1 is

ρ̂xy =
1

n−1

∑n
i=1(xi −X)(yi − Y )√

1
n−1

∑n
i=1

(
xi −X

)2√ 1
n−1

∑n
i=1

(
yi − Y

)2
=

σ̂xy

σ̂xσ̂y
.

• This number is bounded between −1 and 1 so we can determine
how strong a relationship is, unlike the covariance.
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Experiments

Definition 15: Experiment

An experiment is a process by which an observation is made.

Example 2: Six Sided Dice Experiment

Rolling a six sided dice is an experiment and the observation made
is the number the dice lands on.
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Samples Spaces

Definition 16: Sample Space

The sample space S associated with an experiment is the set con-
sisting of all possible sample points.

Example 3: Six Sided Dice Sample Space

The sample space of a six sided dice consists of the outcomes
1, 2, 3, 4, 5, and 6.
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Events

Definition 17: Event

An event A in a sample space is a collection of sample points -
that is, any subset of the sample space.

Example 4: Six Sided Dice Events

Some events of the six sided dice rolling experiment include:

1. The dice landing on the number 5 (A = {5}).

2. The dice landing on an odd number (A = {1, 3, 5}).

3. The dice landing on 1 or 6 (A = {1, 6}).
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Probability

Definition 18: Probability

The term probability of an event A, denoted by P(A), is a measure
of one’s belief in the occurrence of a future event.
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Probability

Property 4: Probability

If S is our sample space consisting of pairwise mutually ex-
clusive events (no two events can happen at the same time)
A1, A2, . . . , An in S, then

1. P(A) ≥ 0.

2. P(S) = 1.

3. P(A1 ∪ . . . ∪An) =

n∑
i=1

P(Ai).
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Probability

Question 4: Probability

What is the probability of rolling a six sided dice and landing on an
odd number?

Answer to Question 4

The probability of any outcome of the six sided dice experiment
is 1

6 . We are interested in the events A1 = {1}, A2 = {3},
and A3 = {5}. Since each of these events is pairwise mutually
exclusive, we have that

P(A1 ∪A2 ∪A3) = P(A1) + P(A2) + P(A3) =
1

6
+

1

6
+

1

6
=

1

2
.

William Brasic Math Review Introduction to Econometrics: ECON 418-518



Summation Operator Functions Calculus Samples Probability Theory Random Variables Expected Value Statistics

Probability

Question 4: Probability

What is the probability of rolling a six sided dice and landing on an
odd number?

Answer to Question 4

The probability of any outcome of the six sided dice experiment
is 1

6 . We are interested in the events A1 = {1}, A2 = {3},
and A3 = {5}. Since each of these events is pairwise mutually
exclusive, we have that

P(A1 ∪A2 ∪A3) = P(A1) + P(A2) + P(A3) =
1

6
+

1

6
+

1

6
=

1

2
.

William Brasic Math Review Introduction to Econometrics: ECON 418-518



Summation Operator Functions Calculus Samples Probability Theory Random Variables Expected Value Statistics

Probability Theorems

Theorem 1: Multiplicative Law of Probability

The probability of A and (∩) B occurring is defined as

P(A ∩B) = P(A) · P(B|A) = P(B) · P(A|B).

Theorem 2: Complement Law of Probability

If A is an event and Ac (A complement) is the event that A does
not occur, then

P(A) = 1− P(Ac).
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Conditional Probability

Definition 19: Conditional Probability

The conditional probability of an event A given an event B has
occurred is defined as

P(A|B) =
P(A ∩B)

P(B)
.

Example 5: Conditional Probability

Denote the event A as rolling a six sided dice and landing on a 1.
Denote the event B as rolling a six sided dice and landing on an
odd number. Then,

P(A|B) =
P(A ∩B)

P(B)
=

1
6
1
2

=
2

6
=

1

2
.
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Independent Events
Definition 20: Independent Events

Two events are independent if the occurrence of one event does
not affect the occurrence of the other. Mathematically, events A
and B are independent if any of the following holds:

1. P(A|B) = P(A).

2. P(B|A) = P(B).

3. P(A ∩B) = P(A) · P(B).

Example 6: Independent Events

Denote the event A as rolling a six sided dice and landing on a 5.
Denote the event B as flipping a coin and landing on tails. Then,

P(A ∩B) = P(A) · P(B) =
1

6
· 1
2
=

1

12
.
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Random Variables

Definition 21: Random Variable

A random variable is a variable that takes on numerical values
determined by the outcome of an experiment.

• We typically denote random variables with capital letters such as X
and Y .

• Examples of random variables include a person’s height and a
student’s GPA.
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Discrete Random Variables

Definition 22: Discrete Random Variable

A random variable X is said to be discrete if it can assume only a
finite or countably infinite number of distinct values.
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Probability Density Function (PDF)

Definition 23: Probability Density Function (PDF)

The probability density function fX for a random variable X pro-
vides fX(x) = P(X = x) for all x.
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Probability Density Function (PDF)

Example 7: Probability Density Function (PDF)

If we let X equal 0 when the flip of a coin lands on tails while
equaling 1 when the flip of a coin lands on heads, then the PDF of
X can be completely characterized as

fX(1) = P(X = 1) =
1

2

fX(0) = P(X = 0) =
1

2
.

• X is an example of a Bernoulli random variable.
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Cumulative Distribution Function (CDF)

Definition 24: Cumulative Distribution Function (CDF)

The cumulative distribution function (CDF) of a random variable
X, denoted by FX , is such that FX(x) = P(X ≤ x) for all x.

• If X has the CDF FX , then

P (X > x) = 1− P (X ≤ x) = 1− FX(x).
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Cumulative Distribution Function (CDF)

Question 5: Cumulative Distribution Function (CDF)

If X is the random variable denoting the outcome of a dice roll,
what is P(X ≤ 5)?

Answer to Question 5

FX(5) = P(X ≤ 5)

= 1− P(X > 5)

= 1− P(X = 6)

= 1− 1

6

=
5

6
.
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Continuous Random Variables

Definition 25: Continuous Random Variable

A random variable X is said to be continuous if it can assume an
infinite number of values.

• A good example of this is a person’s weight.
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Expected Value

Definition 26: Expected Value

If X is a discrete random variable with outcomes x1, . . . , xn and
PDF fX , then the expected value of X is

E[X] =

n∑
i=1

xifX(xi).

If X is a continuous random variable with PDF fX and can take
on any real number, then the expected value of X is

E[X] =

∫ ∞

−∞
xfX(x) dx.

• We often denote the expected value of a random variable by µ.
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Expected Value

Example 8: Expected Value

If X is a random variable denoting the outcome of a dice roll, then

E[X] =

n∑
i=1

xifX(xi)

=

6∑
i=1

xifX(xi)

= 1 · 1
6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6

=
1

6
(1 + 2 + 3 + 4 + 5 + 6)

=
1

6
· 21

= 3.5.
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Expected Value

Property 5: Expected Value

If X and Y are any random variables and a and b are constants,

1. E[a] = a.

2. E[aX] = aE[X].

3. E[aX + bY ] = aE[X] + bE[Y ].

4. E[XY ] = E[X]E[Y ] when X and Y are independent.
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Expected Value
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Conditional Expectation

Definition 27: Conditional Expectation

If X and Y are random variables, then the conditional expectation
of Y given X is E[Y |X].

• Given we have information on X, what can we say about Y .
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Conditional Expectation Properties

Property 6: Conditional Expectation

If X and Y are any random variables and g1 and g2 are functions
of X,

1. E[g(X)|X] = g(X).

2. E[g1(X)Y + g2(X)|X] = g1(X)E[Y |X] + g2(X).

3. E[Y |X] = E[Y ] when X and Y are independent.

4. E[Y ] = E[E[Y |X]].
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Co-Variability of Random Variables

Definition 28: Covariance

The covariance of two random variables X and Y is given by

Cov[X,Y ] = E[(X − µX)(Y − µY )] = E[XY ]− E[X]E[Y ].

• Covariance is a measure of how two variables are related or vary
with one another.

• If Cov[X,Y ] > 0, we say X and Y are positively related.

• If Cov[X,Y ] < 0, we say X and Y are negatively related.
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Independence of Random Variables

Definition 29: Independence of Random Variables

If X and Y are independent, then Cov [X,Y ] = 0.
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Variability of Random Variables

Definition 30: Variance of a Random Variable

The variance of a random variable X is given by

V[X] = E
[
(X − µ)2

]
= E

[
X2
]
− µ2

= σ2.

Definition 31: Standard Deviation of a Random Variable

The standard deviation of a random variable X is given by

σ =
√
V[X].
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Variability of Random Variables

Property 7: Variance

If X and Y are random variables and a and b are constants, then

1. V[a] = V[b] = 0 .

2. V[aX + b] = V[aX] + V[b] = a2V[X].

3. If X and Y are not independent, then
V[X + Y ] = V[X] + V[Y ] + 2Cov[X,Y ].

4. V[Y ] = E[V[Y |X]] + V[E[Y |X]].
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Correlation

Definition 32: Correlation Between Random Variables

If X and Y are two random variables, then the correlation between
X and Y is defined as

Corr[X,Y ] =
Cov[X,Y ]

σXσY
.

• The correlation between any two random variables is bounded
between −1 and 1.
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Correlation Versus Covariance

Question 6: Correlation Versus Covariance

What is the difference between correlation and covariance?

Answer to Question 6

The correlation is bounded between −1 and 1 so by using it we can
obtain both the magnitude (small or large) and direction (positive
or negative) of a relationship between two variables while the co-
variance only gives a direction.
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Distributions

Definition 33: Distribution

A distribution describes how the values of a random variable are
spread or distributed. It provides the probabilities of occurrence of
different possible outcomes in an experiment. Distributions can be
represented using probability density functions.
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Normal Distribution

Definition 34: Normal Distribution

A normal distribution, also known as a Gaussian distribution, is a
continuous probability distribution characterized by its bell-shaped
curve. The probability density function (PDF) of a normally dis-
tributed random variable X with mean µ and variance σ2 is given
by:

fX(x) =
1

σ
√
2π

exp

(
− (x− µ)2

2σ2

)
.

• The normal distribution is symmetric around its mean.

• If X is a normally distributed random variable with mean µ and
variance σ2, we write X ∼ N(µ, σ2).
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Normal Distribution

Property 8: Normal Distribution

If X and Y are independent normal random variables with mean
µX and µY , respectively, and variance σ2

X and σ2
Y , then

1. X + Y ∼ N(µX + µY , σ
2
X + σ2

Y ).

2. cX + b ∼ N(cµX + b, c2σ2
X) for any constants c and b.
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Standardizing a Random Variable

Definition 35: Standardizing a Random Variable

If X is a random variable with mean µ and variance σ2, then its
standardized version is

Z =
X − µ

σ

with mean E[Z] = 0 and variance V[Z] = 1.

• If X is normally distributed, then Z follows the standard normal
distribution (i.e., Z ∼ N(0, 1)).
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Independent and Identically Distributed (i.i.d.)

Definition 36: Independent and Identically Distributed (i.i.d.)

A sample {xi}ni=1 is said to be independent and identically dis-
tributed (i.i.d.) if each random variable in the sample:

1. Is independent: The occurrence of any one variable does not
affect the others.

2. Is identically distributed: All variables follow the same
probability distribution.
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Central Limit Theorem

Theorem 3: Central Limit Theorem

If X1, X2, . . . , Xn are i.i.d. random variables with mean µ and
variance σ2, then as n approaches infinity,

X − µ

σ/
√
n

d→ N(0, 1).

• This means that X converges toward a normal distribution with

mean µ and variance σ2

n for large n.
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Statistical Inference

Definition 37: Terms in Statistical Inference

1. A parameter is the true value of what we are estimating.

2. An estimator is a random variable that attempts to estimate
the parameter.

3. An estimate is the value produced by the estimator.

4. A sampling distribution is the distribution of our estimator.
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Statistical Inference

Example 9: Example of Terms in Statistical Inference

• The mean of a sample {xi}ni=1 given by X = n−1
n∑

i=1

xi is

an estimator.

• The number given by this sample is an estimate of the
parameter µ.

• If we were to repeatedly draw samples and compute X for
each sample, we would form the sampling distribution for X.
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Unbiased Estimators

Definition 38: Unbiased Estimator

An estimator β̂ of the parameter β is unbiased if

E
[
β̂
]
= β.

• On average, our estimator gives us the correct answer.
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Consistency

Definition 39: Consistency

An estimator β̂ of the parameter β is consistent if

P
(∣∣∣β̂ − β

∣∣∣ > ϵ
)
→ 0

as n → ∞ for any ϵ > 0.

• As we get a larger sample, our estimator converges toward the truth.

• We often write β̂
p→ β.
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Efficient

Definition 40: Efficient

An unbiased estimator β̂ of the parameter β is efficient in the class
of unbiased estimators if

V
[
β̂
]
≤ V

[
β̃
]

for any other unbiased estimator β̃ of β.

• If we were to gather multiple samples, estimate β̂ for each sample,
form a sampling distribution, and compute the variance of the
sampling distribution, β̂ would have the smallest such variance.
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Thank You!
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