Matrix Algebra

William Brasic

The University of Arizona

William Brasic

Matrix Algebra

↓ □ ▶ ↓ ● ▶ ↓ ■ ▶ ↓ ■ ▶ ↓ ■ 夕 Q ○
Introduction to Econometrics: ECON 418-518

What is Matrix Algebra?

Definition 1: Matrix Algebra

In its simplest form, matrix algebra is a convenient way to express linear equations in terms of vectors and matrices.

• It greatly simplifies the math and notation for the rest of the semester so we will cover the main topics.

William Brasic

Matrix Algebra

Introduction to Econometrics: ECON 418-518

イロト イボト イヨト イヨト

The main terms in matrix algebra are:

- Dimensions
- Column Vector
- Row Vector
- Transpose
- Dot Product
- Matrix
- Square Matrix
- Symmetric Matrix
- Identity Matrix
- Inverse

3

イロト イヨト イヨト イヨト

Column Vector

Definition 2: Column Vector

A column vector \boldsymbol{x} of numbers x_1, \ldots, x_n is given by

$$oldsymbol{x} = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix}$$

- We say this is a $n \times 1$ dimensional column vector.
- Unless otherwise noted, a vector in this course is a column vector.

Row Vector

Definition 3: Row Vector

A row vector \boldsymbol{x} of numbers x_1, \ldots, x_n is given by

$$\boldsymbol{x} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}.$$

• We say this is a $1 \times n$ dimensional row vector.

William Brasic

Matrix Algebra

Introduction to Econometrics: ECON 418-518

3

(日)

Transpose

Definition 4: Transpose

The transpose of a column vector \boldsymbol{x} of numbers x_1, \ldots, x_n is given by

$$oldsymbol{x}' = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix}' = egin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}.$$

• The transpose of a column vector is a row vector and vice versa.

Introduction to Econometrics: ECON 418-518

3

(日)

Dot Product

Definition 5: Dot Product

The dot product of two vectors \boldsymbol{x} and \boldsymbol{y} is given by

$$\boldsymbol{x}'\boldsymbol{y} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i.$$

• To perform a dot product, the vectors must be of the same dimension.

Introduction to Econometrics: ECON 418-518

3

イロト イポト イヨト イヨト

Dot Product

Question 1: Dot Product

$$\boldsymbol{x'}\boldsymbol{\beta} = \begin{pmatrix} 1 & x_1 & x_2 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} = ?$$

William Brasic

Matrix Algebra

<ロト < 回 ト < 回 ト < 亘 ト < 亘 ト < 亘 ト 三 の Q () Introduction to Econometrics: ECON 418-518

Dot Product

Question 1: Dot Product

$$\boldsymbol{x'}\boldsymbol{eta} = \begin{pmatrix} 1 & x_1 & x_2 \end{pmatrix} \begin{pmatrix} eta_0 \\ eta_1 \\ eta_2 \end{pmatrix} = ?$$

Answer to Question 1

$$x'\beta = \beta_0 + \beta_1 x_1 + \beta_2 x_2 = \beta_0 + \sum_{i=1}^2 \beta_i x_i.$$

William Brasic

Matrix Algebra

<ロト < 回 ト < 回 ト < 亘 ト < 亘 ト < 亘 ト 三 の Q () Introduction to Econometrics: ECON 418-518

Matrix

Definition 6: Matrix

A $n \times k$ matrix X is a rectangular array of numbers given by

	(x_{11})	x_{12}		x_{1k}	
X =	x_{21}	x_{22}	•••	x_{2k}	
	÷	÷	$\gamma_{i,j}$	- :	•
	$\langle x_{n1} \rangle$	x_{n2}		x_{nk}	

- The *n* rows typically correspond to observations.
- The k columns typically correspond to variables.
- We say this is a $n \times k$ dimensional matrix.

イロト イボト イヨト イヨト

Square Matrix

Definition 7: Square Matrix

A $n \times k$ matrix X of numbers is square when it has the same number of rows as columns (so n = k):

$$X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{pmatrix}$$

William Brasic

Matrix Algebra

Introduction to Econometrics: ECON 418-518

3

(日)

Matrix Addition and Scalar Multiplication

Example 1: Matrix Addition and Scalar Multiplication

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} = 2 * \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

• We can add two matrices X and Y, X + Y, if they have the same number of rows and columns (same dimension).

William Brasic

Matrix Algebra

Introduction to Econometrics: ECON 418-518

(日)

Matrix Multiplication

Example 2: Matrix Multiplication

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} (1*1) + (2*3) & (1*2) + (2*4) \\ (3*1) + (4*3) & (3*2) + (4*4) \end{bmatrix}$$
$$= \begin{bmatrix} 1+6 & 2+8 \\ 3+12 & 6+16 \end{bmatrix}$$
$$= \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix}$$

• We can multiply two matrices X and Y, XY, if the number of columns of X equals the number of rows of Y.

• If X is 4×5 and Y is 4×2 , then X'Y exists and is 5×2 .

Matrix Algebra

Introduction to Econometrics: ECON 418-518

イロト 不得 トイヨト イヨト 二日

Matrix-Vector Multiplication

Example 3: Matrix-Vector Multiplication

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} (1*1) + (2*2) \\ (3*1) + (4*2) \end{bmatrix} = \begin{bmatrix} 1+4 \\ 3+8 \end{bmatrix} = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$$

• We can multiply a matrix X with a vector y, Xy, if the number of columns of X equals the dimension of y.

• If X is $n \times k$ and \boldsymbol{y} is $n \times 1$, then $X' \boldsymbol{y}$ is $k \times 1$.

William Brasic

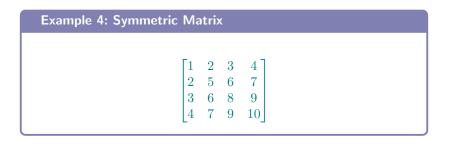
Matrix Algebra

Introduction to Econometrics: ECON 418-518

Symmetric Matrix

Definition 8: Symmetric Matrix

A $n \times n$ square matrix X of numbers is symmetric if X = X'.



Transpose

Theorem 1: Matrix Multiplied by its Transpose is Symmetric

For any $n \times k$ matrix X of numbers, the resulting matrix Y = X'Xand its inverse is symmetric.

Theorem 2: Transpose of a Product

If X is $n \times k$ and β is $k \times 1$, then the transpose of $X\beta$ is

 $(X\boldsymbol{\beta})' = \boldsymbol{\beta}' X'.$

William Brasic

Matrix Algebra

Introduction to Econometrics: ECON 418-518

イロト イボト イヨト イヨト

Linear Model in Matrix Form

Identity Matrix

Definition 9: Identity Matrix

A $n \times n$ square matrix I_n of numbers is called the identity matrix if

$$I_n = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}.$$

William Brasic

Matrix Algebra

↓ □ ▶ ↓ ③ ▶ ↓ ≧ ▶ ↓ ≧ ▶ 〕 ≧ → ○ Q ○
Introduction to Econometrics: ECON 418-518

Linear Algebra Introduction

Main Terms

Linear Model in Matrix Form

Identity Matrix

Property 1: Multiplication with Identity Matrices

Any matrix or vector multiplied by the identity matrix returns the original matrix or vector.

William Brasic

Matrix Algebra

Introduction to Econometrics: ECON 418-518

3

Full Rank (Non-Singular) Matrix

Property 2: Full Rank (Non-Singular) Matrix

If X is a $n \times k$ matrix with full rank, then its columns and rows are linearly independent of each other, i.e., no column can be expressed as a linear combination of other columns and no row can be expressed as a linear combination of other rows.

- In econometrics, we are typically concerned with X having full column rank so no regressor can be expressed as a linear combination of other regressors.
- When X has full rank, this means that X'X is invertible, ensuring the OLS solution exists and is unique.

Introduction to Econometrics: ECON 418-518

(4) (日本)

Inverse

Definition 10: Inverse

The inverse of an $n \times n$ square matrix X is denoted by X^{-1} and is defined when X has n linearly independent columns and rows. When X^{-1} exists, it satisfies $XX^{-1} = X^{-1}X = I_n$, where I_n is the $n \times n$ identity matrix.

 We think about the inverse in the same way as division between two scalars.

Introduction to Econometrics: ECON 418-518

イロト 不得 トイヨト イヨト 二日

Inverse

Property 3: Inverse

When X and Y are invertible,

1.
$$(X^{-1})^{-1} = X$$
.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Inverse

Property 3: Inverse

When X and Y are invertible,

1.
$$(X^{-1})^{-1} = X$$
.

2.
$$(cX)^{-1} = c^{-1}X^{-1}$$
 for any constant $c \neq 0$.

Inverse

Property 3: Inverse

When X and Y are invertible,

1.
$$(X^{-1})^{-1} = X$$
.

2.
$$(cX)^{-1} = c^{-1}X^{-1}$$
 for any constant $c \neq 0$.

3.
$$(X')^{-1} = (X^{-1})'$$
.

Inverse

Property 3: Inverse

When X and Y are invertible,

1.
$$(X^{-1})^{-1} = X$$
.

2.
$$(cX)^{-1} = c^{-1}X^{-1}$$
 for any constant $c \neq 0$.

3.
$$(X')^{-1} = (X^{-1})'$$
.

4.
$$(XY)^{-1} = Y^{-1}X^{-1}$$
.

William Brasic

Matrix Algebra

↓ ロ ト → ● ト → ■ ト → ■ → ○ ○ ○
Introduction to Econometrics: ECON 418-518

Linear Algebra Introduction

Main Terms

Linear Model in Matrix Form

Random Vectors

Definition 11: Random Vector

A random vector \boldsymbol{u} of dimension $n \times 1$ is a vector that contains random variables u_1, \ldots, u_n .

William Brasic

Matrix Algebra

Introduction to Econometrics: ECON 418-518

イロト 不得 トイヨト イヨト 二日

Variance of a Random Vector

Property 4: Variance of a Random Vector

If u is a $n \times 1$ random vector with independent elements each having variance σ^2 and X is a $n \times k$ matrix, then

1. $\mathbb{V}[\mathbf{u}] = I_n \sigma^2$ is a $n \times n$ diagonal matrix with σ^2 along the diagonal.

Variance of a Random Vector

Property 4: Variance of a Random Vector

If u is a $n \times 1$ random vector with independent elements each having variance σ^2 and X is a $n \times k$ matrix, then

- 1. $\mathbb{V}[\mathbf{u}] = I_n \sigma^2$ is a $n \times n$ diagonal matrix with σ^2 along the diagonal.
- 2. $\mathbb{V}[X'\boldsymbol{u}] = X'\mathbb{V}[\boldsymbol{u}]X = X'I_n\sigma^2 X = \sigma^2 X'X.$

William Brasic

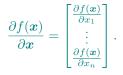
Matrix Algebra

Introduction to Econometrics: ECON 418-518

Vector and Matrix Calculus

Definition 12: Derivative of a Vector

The derivative of a function $f(\boldsymbol{x})$ where \boldsymbol{x} is a $n \times 1$ vector is



• This is commonly called the gradient of *f*.

Introduction to Econometrics: ECON 418-518

イロト 不得 トイヨト イヨト 二日

Vector and Matrix Calculus

Property 5: Matrix Differentiation

For $n \times 1$ vectors \boldsymbol{x} and \boldsymbol{y} and a matrix A,

1.
$$\frac{\partial y'x}{\partial x} = \frac{\partial x'y}{\partial x} = y$$

Vector and Matrix Calculus

Property 5: Matrix Differentiation

For $n \times 1$ vectors \boldsymbol{x} and \boldsymbol{y} and a matrix A,

1.
$$\frac{\partial \mathbf{y'x}}{\partial \mathbf{x}} = \frac{\partial \mathbf{x'y}}{\partial \mathbf{x}} = \mathbf{y}.$$

2. When A is not symmetric,

$$\frac{\partial \boldsymbol{x}' A \boldsymbol{x}}{\partial \boldsymbol{x}} = (A + A') \boldsymbol{x}.$$

Vector and Matrix Calculus

Property 5: Matrix Differentiation

For $n \times 1$ vectors \boldsymbol{x} and \boldsymbol{y} and a matrix A,

1.
$$\frac{\partial \mathbf{y'x}}{\partial \mathbf{x}} = \frac{\partial \mathbf{x'y}}{\partial \mathbf{x}} = \mathbf{y}.$$

2. When A is not symmetric,

$$\frac{\partial \boldsymbol{x}' A \boldsymbol{x}}{\partial \boldsymbol{x}} = (A + A') \boldsymbol{x}.$$

3. When A is symmetric,

$$\frac{\partial \boldsymbol{x}' A \boldsymbol{x}}{\partial \boldsymbol{x}} = (A + A') \boldsymbol{x} = (A + A) \boldsymbol{x} = 2A \boldsymbol{x}.$$

William Brasic

Matrix Algebra

Introduction to Econometrics: ECON 418-518

3

イロト イポト イヨト イヨト

Linear Algebra Introduction

Main Terms

Linear Model in Matrix Form

Why Do We Care?

Question 2: Why Do We Care?

Why go through all the trouble of this matrix algebra stuff?

William Brasic

Matrix Algebra

Introduction to Econometrics: ECON 418-518

イロト イヨト イヨト イヨト 二日

Linear Algebra Introduction

Main Terms

Linear Model in Matrix Form

Why Do We Care?

Question 2: Why Do We Care?

Why go through all the trouble of this matrix algebra stuff?

Answer to Question 2

We can represent any OLS specification conveniently in terms of vectors and matrices.

William Brasic

Matrix Algebra

↓ □ ▶ ↓ ③ ▶ ↓ ≧ ▶ ↓ ≧ ▶ 〕 ≧ → ○ Q ○
Introduction to Econometrics: ECON 418-518

Linear Regression Model in Vector Form

Definition 13: Vector Representation of the Linear Model

Given $y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + u_i$ for $i = 1, \ldots n$, we can write this as

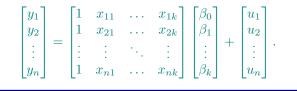
$$y_i = \boldsymbol{x'_i}\boldsymbol{\beta} + u_i.$$

- y_i is agent *i*'s outcome.
- x_i is the $(k+1) \times 1$ vector of covariates corresponding to agent *i*.
- β is the $(k+1) \times 1$ vector of parameters.
- u_i is the error corresponding to agent *i*.

Linear Regression Model in Matrix Form

Definition 14: Matrix Representation of the Linear Model

We can write $y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + u_i$ for $i = 1, \ldots n$, as $y = X\beta + u$,



- y is the $n \times 1$ vector of outcomes for each agent.
- X is the $n \times (k+1)$ vector of covariates for each agent.
- β is the $(k+1) \times 1$ vector of parameters.
- \boldsymbol{u} is the $n \times 1$ vector of errors for each agent.

William Brasic

Matrix Algebra

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ 一 つ へ ○
Introduction to Econometrics: ECON 418-518

Aain Terms

Linear Model in Matrix Form

SSR in Vector Form

Definition 15: SSR in Vector Form

The sum of squared residuals (SSR) in vector notation is

$$\sum_{i=1}^{n} \widehat{u}_{i}^{2} = \widehat{\boldsymbol{u}}' \widehat{\boldsymbol{u}} = \left(\boldsymbol{y} - X \widehat{\boldsymbol{\beta}} \right)' \left(\boldsymbol{y} - X \widehat{\boldsymbol{\beta}} \right)$$

William Brasic

Matrix Algebra

Introduction to Econometrics: ECON 418-518

- 20

(日)

Aain Terms

Linear Model in Matrix Form

SSR in Vector Form

Definition 15: SSR in Vector Form

The sum of squared residuals (SSR) in vector notation is

$$\sum_{i=1}^{n} \widehat{u}_{i}^{2} = \widehat{\boldsymbol{u}}' \widehat{\boldsymbol{u}} = \left(\boldsymbol{y} - X \widehat{\boldsymbol{\beta}} \right)' \left(\boldsymbol{y} - X \widehat{\boldsymbol{\beta}} \right)$$
$$= \boldsymbol{y}' \boldsymbol{y} - \boldsymbol{y}' X \widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}' X' \boldsymbol{y} + \widehat{\boldsymbol{\beta}}' X' X \widehat{\boldsymbol{\beta}}$$

William Brasic

Matrix Algebra

Introduction to Econometrics: ECON 418-518

3

イロト イポト イヨト イヨト

SSR in Vector Form

Definition 15: SSR in Vector Form

The sum of squared residuals (SSR) in vector notation is

$$\sum_{i=1}^{n} \widehat{u}_{i}^{2} = \widehat{u}' \widehat{u} = \left(y - X \widehat{\beta} \right)' \left(y - X \widehat{\beta} \right)$$
$$= y' y - y' X \widehat{\beta} - \widehat{\beta}' X' y + \widehat{\beta}' X' X \widehat{\beta}$$
$$= y' y - 2 \widehat{\beta}' X' y + \widehat{\beta}' X' X \widehat{\beta}.$$

• We can now derive the OLS estimator without using summations! So, lets do it!

William Brasic

Matrix Algebra

Introduction to Econometrics: ECON 418-518

3

The OLS Estimator in Matrix Form

Theorem 3: OLS Solution

The solution, $\hat{\beta}$, to the OLS problem is given by

 $\widehat{\boldsymbol{\beta}} = (X'X)^{-1}X'\boldsymbol{y}.$

- X'y is analogous to Cov(x, y).
- X'X is analogous to $\mathbb{V}(x)$.
- The inverse operator is analogous to division.

Introduction to Econometrics: ECON 418-518

Proof 1: Proof of OLS Solution Part 1

First, find the derivative of the SSR:

$$\frac{\partial SSR\left(\widehat{\boldsymbol{\beta}}\right)}{\partial\widehat{\boldsymbol{\beta}}} = \frac{\partial\widehat{\boldsymbol{u}'}\widehat{\boldsymbol{u}}}{\partial\widehat{\boldsymbol{\beta}}}$$
$$= \frac{\partial}{\widehat{\boldsymbol{\beta}}}\left(\boldsymbol{y'}\boldsymbol{y} - 2\widehat{\boldsymbol{\beta}}'X'\boldsymbol{y} + \widehat{\boldsymbol{\beta}}'X'X\widehat{\boldsymbol{\beta}}\right)$$
$$= -2X'\boldsymbol{y} + 2X'X\widehat{\boldsymbol{\beta}}.$$

William Brasic

Matrix Algebra

↓ □ ▶ ↓ ③ ▶ ↓ ≧ ▶ ↓ ≧ ▶ 〕 ≧ → ○ Q ○
Introduction to Econometrics: ECON 418-518

Proof 1: Proof of OLS Solution Part 2

Second, use the first order condition for minimization:

$$\frac{\partial SSR\left(\widehat{\boldsymbol{\beta}}\right)}{\partial\widehat{\boldsymbol{\beta}}} = -2X'\boldsymbol{y} + 2X'X\widehat{\boldsymbol{\beta}} = 0$$

William Brasic

Matrix Algebra

↓ □ ▶ ↓ ③ ▶ ↓ ≧ ▶ ↓ ≧ ▶ 〕 ≧ → ○ Q ○
Introduction to Econometrics: ECON 418-518

Proof 1: Proof of OLS Solution Part 3

Lastly, solve the equation for $\widehat{\boldsymbol{\beta}}$:

$$-2X'\boldsymbol{y} + 2X'X\widehat{\boldsymbol{\beta}} = 0 \iff 2X'X\widehat{\boldsymbol{\beta}} = 2X'\boldsymbol{y}$$

William Brasic

Matrix Algebra

Introduction to Econometrics: ECON 418-518

イロト 不得 トイヨト イヨト 二日

Proof 1: Proof of OLS Solution Part 3

Lastly, solve the equation for $\widehat{\boldsymbol{\beta}}$:

$$-2X'\boldsymbol{y} + 2X'X\widehat{\boldsymbol{\beta}} = 0 \iff 2X'X\widehat{\boldsymbol{\beta}} = 2X'\boldsymbol{y}$$
$$\iff X'X\widehat{\boldsymbol{\beta}} = X'\boldsymbol{y}$$

William Brasic

Matrix Algebra

Introduction to Econometrics: ECON 418-518

イロト 不得下 イヨト イヨト 二日

Proof 1: Proof of OLS Solution Part 3

Lastly, solve the equation for $\widehat{\boldsymbol{\beta}}$:

$$-2X'\boldsymbol{y} + 2X'X\widehat{\boldsymbol{\beta}} = 0 \iff 2X'X\widehat{\boldsymbol{\beta}} = 2X'\boldsymbol{y}$$
$$\iff X'X\widehat{\boldsymbol{\beta}} = X'\boldsymbol{y}$$
$$\iff (X'X)^{-1}X'X\widehat{\boldsymbol{\beta}} = (X'X)^{-1}X'\boldsymbol{y}$$

William Brasic

Matrix Algebra

Introduction to Econometrics: ECON 418-518

- 20

(日)

Proof 1: Proof of OLS Solution Part 3

Lastly, solve the equation for $\widehat{\boldsymbol{\beta}}$:

$$-2X'\boldsymbol{y} + 2X'X\widehat{\boldsymbol{\beta}} = 0 \iff 2X'X\widehat{\boldsymbol{\beta}} = 2X'\boldsymbol{y}$$
$$\iff X'X\widehat{\boldsymbol{\beta}} = X'\boldsymbol{y}$$
$$\iff (X'X)^{-1}X'X\widehat{\boldsymbol{\beta}} = (X'X)^{-1}X'\boldsymbol{y}$$
$$\iff I_{k+1}\widehat{\boldsymbol{\beta}} = (X'X)^{-1}X'\boldsymbol{y}$$

William Brasic

Matrix Algebra

Introduction to Econometrics: ECON 418-518

- 20

(日)

Proof 1: Proof of OLS Solution Part 3

Lastly, solve the equation for $\widehat{\boldsymbol{\beta}}$:

 $-2X'\boldsymbol{y} + 2X'X\widehat{\boldsymbol{\beta}} = 0 \iff 2X'X\widehat{\boldsymbol{\beta}} = 2X'\boldsymbol{y}$ $\iff X'X\widehat{\boldsymbol{\beta}} = X'\boldsymbol{y}$ $\iff (X'X)^{-1}X'X\widehat{\boldsymbol{\beta}} = (X'X)^{-1}X'\boldsymbol{y}$ $\iff I_{k+1}\widehat{\boldsymbol{\beta}} = (X'X)^{-1}X'\boldsymbol{y}$ $\iff \widehat{\boldsymbol{\beta}} = (X'X)^{-1}X'\boldsymbol{y}. \quad \Box$

Hooray!

William Brasic

Matrix Algebra

Introduction to Econometrics: ECON 418-518

イロト 不得 トイヨト イヨト 二日

Thank You!

William Brasic

Matrix Algebra

Introduction to Econometrics: ECON 418-518

王

イロト イヨト イヨト イヨト