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Abstract

AI-powered pricing algorithms raise concerns about supracompetitive out-
comes without explicit coordination. Meanwhile, digital platforms use recom-
mendation systems (RSs) to influence product visibility. This paper models
Bertrand-Markov price competition in a differentiated product market with
heterogeneous consumers, where both sellers’ pricing and the platform’s rec-
ommendations are AI-driven. The findings show that RSs can autonomously
inhibit algorithmic anticompetitive conduct, resulting in prices even below the
Bertrand-Nash benchmark. The results hold when the platform only prior-
itizes profits, as well as with variations in consumer heterogeneity, market
conditions, and underlying learning parameters.
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I. Introduction

Artificial Intelligence (AI) is reshaping industries by automating processes, improving

decision-making, and driving innovation. Yet, this technological surge also raises impor-

tant questions about moving from human-led to algorithm-driven strategies. A pressing

concern is whether AI-based pricing algorithms, designed to maximize firm profits, can

inadvertently produce supracompetitive outcomes in the absence of explicit coordina-

tion. At the same time, platforms are increasingly using AI-driven recommendation

systems (RSs) to determine which products consumers see,1 incorporating information

on both prices and consumer preferences.

This paper investigates whether AI-driven pricing algorithms can tacitly learn to col-

lude under a platform that employs an AI-based recommendation system (RS) to allo-

cate product visibility across heterogeneous consumers. Its main objective is to discover

*I am especially grateful to Matthijs Wildenbeest for his feedback, support, and guidance. Code for
the main results of this paper can be found at https://github.com/willbrasic/Algorithmic_Pricin
g_Recommendation_Systems_Competition. All errors are my own.
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whether these RSs mitigate or exacerbate collusive tendencies among pricing algorithms.

Findings indicate that recommending products based on price and consumer preferences

significantly reduces tacit supracompetitive outcomes relative to a platform without an

RS. These results are true even when the platform completely ignores consumer welfare.

This paper diverges from existing work by: (1) allowing pricing algorithms to compete

on a platform enhanced by an AI-based RS and (2) demonstrating how tacit anticom-

petitive outcomes can be mitigated autonomously rather than merely established. In

doing so, it fills gaps in the literature on algorithmic collusion and platform-based com-

petition, while also contributing to current legal and policy debates in the AI era. To the

best of my knowledge, this is the first paper to analyze pricing algorithms competing on

a platform that uses an AI-based RS—a rapidly growing scenario in today’s AI-driven

world.

Reinforcement learning (RL) is a branch of machine learning wherein agents learn

to maximize cumulative returns by reinforcing successful actions and discouraging less

effective ones. RL is particularly relevant in real-world digital markets because it en-

ables sellers and platforms to adaptively optimize pricing and recommendation strategies

through experience, even in complex and uncertain environments. Major firms have be-

gun implementing RL at scale—airlines like Delta use it for dynamic pricing,2 while

companies like Netflix3 and YouTube4 leverage RL-based recommendation systems to

personalize content delivery and improve user engagement.

Q-learning, a foundational RL algorithm that underpins more advanced methods

based on neural-networks,5 has played a crucial role in experimental research on pric-

ing dynamics (Calvano et al. (2020); Klein (2021); Johnson, Rhodes, and Wilden-

beest (2023)) while remaining more tractable than “black-box” deep learning approaches;

indeed, outcomes from Q-learning generally extend to these sophisticated algorithms

aside from faster convergence to collusive prices.6 In this paper, both firms and the

platform employ Q-learning for strategic decision-making—firms use Q-learning-based

pricing algorithms to dynamically set prices, while the platform applies Q-learning in its

recommendation system (RS) to optimally display products to consumers with varying

preferences, balancing profit maximization and consumer welfare. Although the specific

algorithms used by firms in practice are often unknown, Q-learning provides a good

proxy given the common mathematical foundation across RL methods, and their appli-

cation is becoming increasingly prevalent as firm’s continue to adopt AI-based strategies.

Moreover, RL is well-suited for modeling real-world dynamic pricing and RSs because it

naturally accommodates repeated decision-making under uncertainty, limited informa-

2See https://www.fetcherr.io/ for how reinforcement learning is transforming pricing strategies
in the airline industry.

3See how Netflix is using RL for RSs here: https://netflixtechblog.com/reinforcement-learn

ing-for-budget-constrained-recommendations-6cbc5263a32a.
4See how YouTube is uing RL for RSs here: https://arxiv.org/abs/1812.02353.
5For example, Deep Q-Networks (DQNs) and Double Deep Q-Networks (DDQNs).
6See the existing literature in Section II for papers demonstrating this.
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tion, and feedback-driven adaptation—core features of digital marketplaces where firms

iteratively adjust prices and platforms optimize visibility based on consumer response.

Sellers on the platform rely on RL-based pricing algorithms without explicit di-

rectives for coordination, drawing only on profit, pricing feedback, and the platform’s

recommendations. This approach to the seller’s state space is partly inspired by Mu-

solff (2024), who finds that Amazon Marketplace sellers monitor their Buy Box status

alongside competitor prices. Meanwhile, the platform itself uses RL in its RS to display

products to consumers with diverse preferences and price sensitivities, aiming to bal-

ance profit and consumer welfare. Using RL for RSs is a topic gaining increasing steam

in digital marketplaces making this choice increasingly practically plausible. In this

environment, firms engage in price competition, conditioning their strategies on past

prices and recommendations. After prices are set, the platform’s AI-driven RS allocates

product visibility to heterogeneous consumers based on the sellers’ prior-period prices

and its own earlier recommendations. This modeling choice aligns with evidence from

K. H. Lee and Musolff (2023), indicating that Amazon’s Buy Box algorithm primarily

rewards the lowest-priced product in the market, all else held equal.

The theoretical model examines competition among firms selling differentiated goods

on a single platform over an infinite time horizon. To capture realistic market condi-

tions, a multinomial logit model with heterogeneous consumers is used to represent the

stage game. In this setting there are two groups of consumers each with their own prod-

uct preferences and two sellers engaging in Bertrand pricing competition on a single

platform. In any given time period, each seller’s pricing algorithm chooses a price for

their product. Then, the platform’s RS makes a product recommendation to each con-

sumer type. Subsequently, a share of each type choose among the product recommended

to them and the outside option while the remaining share “search” and choose among

all products in the market or the outside option. This approach attempts to model

consumer behavior on Amazon with the Amazon Buy Box. If consumers do search,

they incur a disutility factor whose purpose is to reflect that consumer welfare is higher

when consumers only see their preferred product relative to seeing all available options.

The sellers in each time period pay a percentage royalty fee to the platform which is

incorporated into their profit function. Therefore, the platform takes a share of royalty

revenues from the sellers in the market as its profit in each time period. Furthermore,

the platform is allowed to incorporate consumer welfare into its objective function as

well. Depending on how heavily the platform prioritizes consumer welfare—which can

foster network effects and thereby enhance long-term profits—market outcomes may fur-

ther improve for consumers. Then, sellers update their prices and this process repeats

indefinitely until the pricing algorithms “converge.”7

This paper first demonstrates that, in a market with heterogeneous consumers and

the counterfactual world of no platform-based recommendation system, AI-driven pric-

7Convergence is further elucidated in Section III.C.
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ing algorithms competing on a platform can converge to supracompetitive prices, result-

ing in lower consumer welfare. This aligns with the framework of Calvano et al. (2020),

but extended here to explicitly include preference heterogeneity. Notably, this provides

a setup in which a platform’s RS could potentially mitigate supracompetitive outcomes.

Two additional counterfactual scenarios are considered in which the platform uses a

recommendation system (RS) without an AI component: (1) the platform recommends

each seller to the consumer type that prefers them, and (2) the platform recommends the

seller offering the highest average utility to a given consumer type. The findings show

that while supracompetitive prices emerge in case (1), incorporating pricing information

in case (2) leads to a substantial reduction in prices. These cases serve to shed light on

the dynamics introduced when the RS incorporates a learning component.

Next, the model is augmented by introducing an AI-based RS that recommends

a single seller to each consumer type. In the baseline scenario, the market comprises

equal proportions of two consumer types, each with price sensitivity normalized to one.

Preference heterogeneity is explicitly modeled by assigning each consumer type a dis-

tinct preferred product through a “product preference matrix.”8 In this environment,

the pricing algorithms converge to prices even below the Bertrand-Nash benchmark,

indicating their tacit anticompetitive behavior is effectively curtailed. Outcomes are

relatively consistent to the fixed rule recommendation algorithm based on average util-

ity suggesting the platform’s AI-based RS can effectively learn each consumer types

utility function. Moreover, consumer welfare and overall market output are higher than

in the no-RS scenario, irregardless of how heavily the platform weighs consumer surplus

in its objective function. Hence, not only does a platform-level AI-based RS inhibit tacit

coordination, it also leads to better outcomes for consumers and the platform.

Then, this paper explores how these findings vary under different market conditions.

First, when consumer preferences shift from being highly divergent to more similar, I

observe that—without an RS—algorithmic supracompetitive outcomes becomes more

prevalent, even though one might expect that greater similarity in preferences would

intensify competition, as both consumer types favor the same product. This finding

suggests that in a market with relatively more homogeneous consumers, algorithmic

tacit coordination is more prevalent. In contrast, when the platform deploys an RS, the

convergence of preferences intensifies competition, resulting in lower prices and higher

consumer welfare relative to the Bertrand–Nash benchmark, which is consistent with

standard non-cooperative competition theory. Second, consumers who choose to search

beyond their recommended product incur a disutility cost, reflecting the idea that con-

sumer welfare is higher when they are shown only their preferred option rather than

an exhaustive list. This disutility is positively linked to the importance of the RS; as

the disutility factor rises, the platform’s ability to make accurate recommendations be-

comes even more critical. The results indicate that, as long as the RS delivers correct

8This matrix is described in Section IV.
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recommendations, increases in this disutility factor yield gains in consumer welfare and

lower prices relative to the competitive benchmark. Third, the proportion of consumers

who restrict their choices to the outside option and the recommended product is a

crucial model parameter. Provided that the RS makes accurate recommendations, an

increase in this share benefits consumers uniformly, regardless of the weight placed on

consumer surplus in the platform’s objective function. Lastly, these effects hold across

varying distributions of consumer types and degrees of heterogeneity in price sensitivi-

ties. Moreover, the findings of this paper are robust to further algorithmic and economic

environment modifications, including changes to the sellers’ action spaces, state spaces

of both sellers and the platform, platform royalty fee paid by the sellers, underlying

learning parameters, and the platform’s action selection mechanism.

Overall, my findings suggest that a platform’s RS can greatly inhibit the autonomous

algorithmic supracompetitive outcomes that occurs in the long-run and even benefit con-

sumers by pushing prices lower than the Bertrand-Nash benchmark. The significance

of these findings grows in light of mounting concerns over algorithmic coordination and

the effect of RSs in digital markets. Historically, tacit price-fixing seemed implausible

because it was assumed firms could not coordinate collusive strategies without explicit

communication. However, the Sherman Act9 has long targeted explicit price-fixing,

and the rise of AI-driven pricing has fueled debates over whether algorithms could en-

able tacit supracompetitive behavior without direct communication. This worry has

attracted attention from academic economists (Calvano et al. (2019)), private-sector

economists (Gupta and Kifer (2024)), and regulatory bodies including the FTC10 and

DOJ11, as well as policymakers.12 From an antitrust standpoint, the findings should

reassure regulators worried about autnonomous algorithmic collusion, as AI-based pric-

ing algorithms on a platform with an RS are unable to reach supracompetitive pricing.

More broadly, pricing algorithms have difficulty learning to tacitly collude in more com-

plex environments, even with only two players. These insights suggest that competition

authorities might usefully focus on overseeing the recommendation mechanisms used

by a single platform, rather than zeroing in on the AI-based pricing algorithms of all

individual sellers. Strengthening oversight of platform RSs could have the dual effect of

(1) driving lower prices and higher consumer welfare while (2) mitigating algorithmic

self-preferencing, a topic of growing concern in the antitrust community.

The remainder of this paper is structured as follows. Section II. reviews the existing

literature on algorithmic pricing and recommendation systems. Section III. provides an

overview of reinforcement learning theory and Q-learning. Section IV. details the theo-

9https://www.ftc.gov/advice-guidance/competition-guidance/guide-antitrust-laws/antitr

ust-laws
10https://www.ftc.gov/business-guidance/blog/2024/03/price-fixing-algorithm-still-pri

ce-fixing
11https://www.justice.gov/opa/pr/justice-department-sues-realpage-algorithmic-pricing

-scheme-harms-millions-american-renters
12https://www.nytimes.com/2024/08/30/opinion/algorithm-collusion-amy-klobuchar.html
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retical model and its key assumptions. Section V. presents the main results, and Section

VI. concludes with a broader perspective on this work’s contributions, implications for

competition policy, and possible directions for future research.

II. Literature Review

The body of research on algorithmic pricing spans three primary areas: antitrust im-

plications, experimental studies demonstrating the feasibility of tacit collusion among

algorithms, and empirical analyses assessing the impact of pricing software on real-world

market outcomes. While these studies have advanced understanding, the field remains

underdeveloped, leaving significant opportunities for further exploration. Alongside pric-

ing algorithms, RSs have emerged as critical components of market dynamics, influencing

consumer behavior and product visibility. RSs can potentially reinforce supracompet-

itive outcomes by steering consumers toward higher-priced options or mitigate it by

enhancing competition and transparency. Moreover, RSs have the potential to learn to

self-preference a platform’s own products, perhaps at the expense of consumers. This

section reviews key studies on algorithmic collusion and examines the role of RSs in

shaping competitive outcomes and their implications for antitrust policy.

A. Autonomous Algorithmic Collusion

The rise of algorithmic pricing has introduced significant concerns about the poten-

tial for collusion without the direct communication traditionally associated with human

price-setting (Calvano et al. (2019)). Unlike conventional antitrust violations, which

rely on evidence of explicit communication or agreements between firms to restrict com-

petition, algorithmic collusion can emerge autonomously through AI pricing software

Mehra (2016). Legal studies, including Ezrachi and Stucke (2017) and Ezrachi and

Stucke (2020), have termed these scenarios Artificial Intelligence and the Digital Eye,

highlighting the inadequacy of existing antitrust laws to address these challenges. Most

legal scholars agree that Section I of the Sherman Act is insufficient for tackling algo-

rithmic price-fixing given this law relies on explicit communication for prosecuting the

cartel. To that end, Mazumdar (2022) contends that Section 5 of the Federal Trade Com-

mission (FTC) Act, with its broader scope, could provide a more effective regulatory

framework. While not unanimous (Devogele (2023), Fortin (2021), Schrepel (2020)),

the general consensus is that current antitrust law is likely ill-equipped to handle such

algorithmic tacit collusion cases.

One may ask why this issue is becoming prevalent now and how come humans were

unable to facilitate tacit collusion. Could a human not sit and monitor market prices

and make adjustments on their own? In reality, algorithms can much more accurately

facilitate price-fixing schemes by quickly detecting and reacting to attempts to cheat on

a collusive agreement (McSweeny and O’Dea (2017)) without any interruptions or emo-
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tions that a human may face. Traditionally, human collusion involves a stepwise process

as outlined by Harrington (2018): (1) communication of collusive intent, (2) mutual

adoption of collusive strategies, and (3) resulting higher prices. Antitrust enforcement

has historically relied on tangible evidence of such communication to prosecute viola-

tions. However, AI algorithms fundamentally alter this paradigm. Once deployed, these

algorithms can autonomously learn collusive behavior without explicit human direction

or knowledge, bypassing the explicit coordination requirement central to Section I of

the Sherman Act. This raises a critical legal question: how should antitrust law evolve

to address AI-enabled collusion?

One potential avenue lies in the distinct nature of algorithmic collusion. While hu-

man collusion relies on intent and is difficult to prosecute due to the inaccessibility of firm

managers’ private thoughts, algorithmic behavior offers a unique opportunity. The un-

derlying code of AI pricing software can be inspected and tested for collusive tendencies,

providing antitrust authorities with a tangible basis for enforcement. Moreover, antitrust

regulators could empirically audit the algorithms by applying statistical tests to the data

they collect (Hartline, Long, and Zhang (2024)). Nazzini and Henderson (2024) argue

competition authorities should be given such powers. By identifying and regulating

algorithms with collusive potential, authorities could establish compliance benchmarks

and conduct systematic evaluations to prevent anticompetitive pricing strategies. This

approach would ensure a more adaptive and effective regulatory framework capable of

addressing the challenges posed by AI-driven pricing. MacKay and Weinstein (2022)

suggest using regulation to limit key features of algorithms such as prohiting asymmetric

pricing frequency thereby eliminating the possibility of leader-follower conduct or pro-

hibiting algorithms from taking competitor prices into account. Furthermore, so-called

“managerial override” (Leisten (2024)) where managers can intervene in the algorithmic

price setting process could encourage more competitive prices.

The literature on algorithmic pricing collusion underscores a critical concern: whether

algorithms can learn to collude and, if so, under what conditions. While some studies,

like Miklós-Thal and Tucker (2019), argue that algorithmic pricing can lead to lower

prices and higher consumer welfare, others present evidence of collusive behavior (Asker,

Fershtman, and Pakes (2022)). The seminal paper of Calvano et al. (2020) show that

symmetric Q-learning agents in a duopoly setting can achieve supracompetitive profits

and sustain them through learned reward-punishment schemes. The algorithms learn

based on the consequences of their previous actions in a similar fashion to an experience

based equilibrium first proposed by Fershtman and Pakes (2012). Klein (2021) extends

the analysis to sequential pricing games, finding similar collusive outcomes alongside

asymmetric pricing cycles similar to that first discussed in Maskin and Tirole (1988),

but reaffirming the challenges posed by market size and convergence rates. Building

on this, Brasic (2024) shows that asymmetric RL algorithms, specifically SARSA and

Q-learning, with diverging learning parameters can obtain and sustain anticompetitive
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prices and profits through learned trigger strategies as well. This finding emphasizes

the collusive potential of heterogeneous algorithms and the importance of exploring

more complex market and algorithmic interactions. In a setting identical to Calvano

et al. (2020), Hettich (2021) and Frick (2023) show deep RL-based pricing algorithms,

namely deep Q-networks (DQNs) and Soft Actor-Critic (SAC), have a heightened ca-

pacity to achieve supracompetitive outcomes. Brown and MacKay (2024) theoretically

examine how asymmetries in pricing algorithms lead to what they call a “coercive equi-

libria” where a firm with faster pricing technology induces higher equilibrium prices that

can be worse for consumers than traditional collusive outcomes. While trigger strategies

are the conventional means to sustain collusion, Banchio and Mantegazza (2022) show

an alternative method for algorithms to sustain collusion relying on statistical linkages.

An experiment by Fish, Gonczarowski, and Shorrer (2024) shows that pricing agents

based on large language models (e.g., ChatGPT) can also reach supracompetitive out-

comes. Johnson, Rhodes, and Wildenbeest (2023) demonstrate that a retail platform

has the ability to design rules that mitigate algorithmic collusion in a duopoly market

with Q-learning agents. My paper builds on this setting by showing such platforms using

an AI-based RS can autonomously mitigate such outcomes. The discussion of the impli-

cations of algorithms on competition is not only limited to pricing, but auction design

too as Banchio and Skrzypacz (2022) find collusive outcomes (bids lower than values)

in first-price auctions.13 Collectively, these studies illustrate the evolving dynamics of

algorithmic collusion and its implications for competitive markets.

Shifting from experimental settings to empirical investigations, Assad et al. (2024)

provide direct evidence of algorithmic collusion using real-world data from German

gasoline markets. Their identification strategy, leveraging structural breaks in pric-

ing behavior, demonstrates that AI pricing software adoption leads to significant mar-

gin increases in competitive settings, validating the concerns raised by experimental

findings. Brown and MacKay (2023) document how asymmetry in pricing algorithms

can transform competition in online retail, driving prices above competitive levels even

without explicit or tacit collusion. Musolff (2024) uses a unique e-commerce data set

documenting that sellers employing repricing tools initially experience lower prices by

undercutting their competitors, but these prices are driven up in the longer term by

“resetting strategies” used by the algorithms leading to decreases in welfare. Lastly,

Calder-Wang and Kim (2024) examine the U.S. multifamily rental market, where algo-

rithmic adoption enhances pricing responsiveness, but also correlates with elevated rents

and reduced occupancy in high-penetration markets. Employing structural modeling,

they reveal moderate evidence for coordination under certain market conditions, further

linking experimental theories of collusion with observed pricing behaviors.

Together, these experimental and empirical contributions deepen the understanding

of algorithmic collusion, demonstrating its feasibility in experimental simulations and

13They also tested this in second-price auctions finding bids are competitive.
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its manifestation empirically. These papers highlight the general agreement between

theoretical models, experimental validation, and empirical application, advancing the

broader discourse on competition policy in the age of algorithmic pricing.

B. Recommendation Systems (RSs)

Although algorithmic pricing systems have only gained prominence over roughly the

last decade, digital marketplaces such as Amazon have been essential for consumers

for much longer. On these platforms, which connect consumers with producers, al-

gorithms—especially recommender systems (RSs)—play a pivotal role in determining

which products are displayed to individual users. For instance, Amazon’s “Buy Box”

algorithm has attracted considerable attention from researchers examining how it selects

which product to showcase (K. H. Lee and Musolff (2023)). In tandem, sellers on these

platforms are increasingly turning to algorithmic pricing strategies to optimize their

pricing policies (L. Chen, Mislove, and Wilson (2016)).

From a competition perspective, the effect of RSs on consumer welfare remains am-

biguous. On one hand, RSs may improve the match quality between products and

consumers, thereby enhancing consumer welfare. On the other hand, they may allow

sellers to sustain higher prices if the platform’s profit incentives lead to better market

segmentation. Calvano et al. (2023) investigates such outcomes using a latent-factor

collaborative filtering RS from the computer science literature, documenting both pro-

competitive and anti-competitive results. Moreover, Fletcher, Ormosi, and Savani (2023)

addresses how systematic popularity and homogeneity biases in RSs can harm competi-

tion between suppliers, even when the platform’s goals broadly align with those of end

users.

A paper closely related to the one presented here is Xu, S. Lee, and Tan (2023), which

models Q-learning algorithms competing in a differentiated product market hosted by

a platform whose objective is to maximize either profit or demand. Their findings show

that prices converge to a joint-collusive outcome when the platform aims to maximize

profit, but converge to a more competitive outcome when the platform instead maximizes

demand.14 In contrast, this paper is the first to incorporate heterogeneous consumer

preferences and price sensitivities in a differentiated product market, examining how

AI-based RSs influence prices and consumer welfare with and without a platform’s RS

intervening. Notably, even when a platform solely prioritizes seller revenues, the risk of

autonomous algorithmic supracompetitive behavior is successfully curtailed, contradict-

ing the results of their paper.

Although not the main focus of this paper, platforms such as Amazon that employ

RSs (e.g., the “Buy Box”) can also engage in algorithmic steering, wherein the platform

“steers” consumers toward particular products regardless of whether they are the best

14Note that their definition of “competitive” and “collusive” corresponds to scenarios without platform
intervention, which may not align with outcomes in the presence of platform intervention.
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match for those consumers. This issue is exacerbated by growing vertical integration

in digital marketplaces, which increases incentives for platforms to steer consumers to

their own offerings, known as self-preferencing.15 Self-preferencing has become a hot

topic within antitrust and competition policy (Hovenkamp (2023)). Generally, antitrust

law prohibits conduct by dominant firms that harms competition or consumer wel-

fare. Under U.S. law, such conduct may be challenged under Section 2 of the Sherman

Act, and under EU law, it may fall under Article 102 of the Treaty on the Function-

ing of the European Union (TFEU).16 Additionally, new regulations such as the EU’s

Digital Markets Act (DMA)17 explicitly target certain self-preferencing behaviors by

so-called “gatekeeper” platforms, signaling increased regulatory attention to platforms

that leverage their market position to boost their own offerings. Empirical studies exam-

ining self-preferencing remain scarce due to limited data availability. One such example

is Farronato, Fradkin, and MacKay (2023), who use Amazon search-ranking data to

show that Amazon-branded products are displayed more prominently in search results.

However, this does not necessarily imply consumer harm. By contrast, N. Chen and

Tsai (2024) identify both self-preferencing behavior for Amazon-branded products and

a corresponding reduction in consumer welfare. A particularly relevant study to this pa-

per is Johnson, Rhodes, and Wildenbeest (2024), who analyze a duopoly setting where

one seller competes against a vertically integrated platform in price with both sides

employing AI-based pricing algorithms. Their findings reveal prominent steering by the

platform, yet the introduction of an advertising option ultimately drives prices lower.

Thus, while the literature has established platform’s RS can lead to self-preferencing

of the platform’s vertically integrated product, the results of this paper suggest that

loss in consumer welfare may be offset by the relative gains due to the RS mitigating

algorithmic tacit coordination.

These experimental and empirical studies offer fresh insights into recommendation

systems, revealing both their promise in improving consumer experiences and the po-

tential distortions they can create. By bridging theoretical models, simulation proof-of-

concepts, and real-world evidence, they highlight the need for thoughtful oversight and

regulation as RSs, and particularly AI-based RSs, gain further prominence in digital

marketplaces.

III. Reinforcement Learning

Reinforcement learning is built on the theory of dynamic programming and Markov

decision processes (MDPs). For a thorough introduction through the lens of Bertrand-

15For an extensive overview of the self-preferencing literature, see Kittaka, Sato, and Zennyo (2023).
16See, for instance, https://digitalfreedomfund.org/wp-content/uploads/2020/05/5_DFF-Facts

heet-Self-preferencing-and-EU-competition-law.pdf.
17For more on the EU’s DMA, see https://commission.europa.eu/strategy-and-policy/priori

ties-2019-2024/europe-fit-digital-age/digital-markets-act-ensuring-fair-and-open-digit

al-markets_en.
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Markov pricing competition, see Brasic (2024).

Repeated Bertrand competition can be modeled using a Markov Decision Process

(MDP), forming the basis of a Bertrand-Markov pricing game. In reinforcement learning,

an agent interacts with an environment to discover the optimal behavior, maximizing its

expected cumulative discounted return (profit) over time. The agent learns through trial

and error, without prior knowledge of the environment’s underlying dynamics, relying

on the framework of MDPs (Agarwal et al. (2022)).

Definition 1. In reinforcement learning, the interactions between the agent and the

environment can be described by an infinite-horizon MDP M = (S,A,R, T , δ, µ):

· S is the state space,

· A is the action space,

· R : S ×A → R is the reward function,

· T : S × A → P(S) is a stochastic state-transition function mapping the current

state and action at time period t, st and at, respectively, into probabilities of ob-

serving all possible next states st+1 ∈ S, where P(S) ⊆ [0, 1]|S| is the probability

simplex over S,
· δ ∈ [0, 1) is the discount factor, which is bounded away from one to ensure infinite

summations converge,

· µ ∈ P(S) is the initial state distribution governing how the initial state s0 is drawn.

At each time period t, the agent observes the current state st ∈ S, takes an action

at ∈ A, receives a reward rt = R(st, at), and transitions to a new state st+1 ∼ T (·|st, at).
The agent’s goal is to maximize the expected discounted cumulative return:

Rt = Eπ

[ ∞∑
h=0

δhrt+h+1

]
,

by finding the optimal policy π∗:

π∗ = argmax
π

Eπ

[ ∞∑
h=0

δhrt+h+1

]
.

Reinforcement learning leverages value functions to guide agents. The value function

Vπ(st) measures the expected return from state st under policy π:

Vπ(st) = Eπ

[
rt+1 + δVπ(st+1)

∣∣∣st] .
The corresponding action-value function Qπ(st, at) evaluates the expected return from

taking action at in state st:

Qπ(st, at) = Eπ

[
rt+1 + δQπ(st+1, at+1)

∣∣∣st, at] .
11



For the optimal policy π∗, Vπ∗(st) and Qπ∗(st, at) satisfy the Bellman optimality

equations:

Vπ∗(st) = E
[
rt+1 + δVπ∗(st+1)

∣∣∣st] ,
Qπ∗(st, at) = E

[
rt+1 + δmax

a′∈A
Qπ∗(st+1, a

′)
∣∣∣st, at] ,

where π∗ is the policy maximizing both the value and action-value functions, i.e.,

Vπ∗(st) = max
π

Vπ(st)

Qπ∗(st, at) = max
π

Qπ(st, at).

This framework extends naturally to multi-agent reinforcement learning (MARL),

where multiple agents interact in a shared environment, often modeled as stochastic

games.18

Definition 2. A multi-agent reinforcement learning (MARL) environment can be de-

scribed as a stochastic game G = (P,S,A,R, T , δ, µ):

· P is the set of n agents,

· S is the state space,

· A =×n
i=1Ai is the joint action space, where Ai represents the action space of

agent i,

· Ri : S ×A→ Rn is the joint reward function, where Ri is the reward received by

agent i,

· T : S×A→ P(S) is the stochastic state-transition function that maps the current

state and joint actions to probabilities over the next state, where P(S) ⊆ [0, 1]|S|

is the probability simplex over S,
· δ ∈ [0, 1)n is the vector of discount factors for each agent, and

· µ ∈ P(S) is the initial state distribution governing how the initial state s0 is drawn.

Policies in MARL form a joint policy, π : S → P(A), and the Q-function reflects joint

action values under this policy. Depending on the reward structure, MARL scenarios

can vary from fully cooperative games (positively correlated rewards) to zero-sum games

(inversely correlated rewards). In some cases, deterministic state-transition functions

can simplify the stochastic nature of T by directly mapping joint actions to subsequent

states, as used in this paper.

A. Q-learning in Multi-Agent Reinforcement Learning (MARL)

Q-learning, a fundamental reinforcement learning algorithm introduced by Watkins

and Dayan (1992), has been extensively applied in MARL settings. In these scenarios,

18For more on MARL, see Busoniu, Schutter, and Babuska (2008) and Yang and Wang (2020).
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agents interact within a shared environment and learn their strategies simultaneously.

Early works such as Waltman and Kaymack (2008) investigated Q-learning agents in

Cournot oligopolies, while more recent studies like Calvano et al. (2020) and Klein (2021)

explored its application in simultaneous and sequential oligopoly games. In MARL, each

agent maintains its own Q-function, which reflects its expected cumulative return given

the joint actions of all agents.

Q-learning remains a temporal-difference (TD)-based, off-policy algorithm in MARL.
19 Each agent i ∈ P estimates its Q-function, Qi(st, ai), which depends on the current

state st ∈ S and action selection ait ∈ Ai. The update rule for agent i is given by:

Qi(st, ait)← Qi(st, ait) + αi

[
ri,t+1 + δimax

a′∈Ai

Qi(st+1, a
′)−Qi(st, ait)

]
, (1)

where αi ∈ [0, 1] is the learning rate, δi ∈ [0, 1) is the discount factor, and ri,t+1 is

the reward received by agent i at time t + 1. The Q-function of each agent reflects its

expectation of future returns based on its interactions with both the environment and

other agents.

Q-learning in MARL is off-policy, as agents can evaluate future actions ait based on a

target policy that may not align with their current behavioral policies. Q-learning being

off-policy means one estimatesQπ(st, at) using a different policy π′ for all (st, at) ∈ S×A.
In other words, the agent updates its value estimates as if it were acting optimally, even

if its actual behavior reflects exploration. This decoupling of behavior and target policy

is especially important in algorithmic pricing, as it allows firms to learn aggressive profit-

maximizing strategies without being constrained by the exploratory actions taken during

learning. The algorithm is also model-free, as it does not require prior knowledge of the

state-transition function T . The pseudocode for Q-learning in a MARL setting, using

ϵ-greedy exploration (further elucidated below), is presented in Algorithm 1.

19See Hu (2023) for more details on the semantics of reinforcement learning algorithms.

13



Algorithm 1 Multi-Agent Q-learning with ϵ-greedy exploration

Require: αi ∈ [0, 1], δi ∈ [0, 1), and ϵi > 0 (small)
Require: Qi(s, ai) initialized arbitrarily for each agent i ∈ P and all (s, ai) ∈ S ×Ai

1: for all episodes e = 1, . . . , E do
2: Initialize t = 0 and maximum time periods allowed max t
3: Initialize s0
4: while t < max t and algorithm not converged do
5: for all agents i ∈ P do
6: take action ait using ϵ-greedy: ait ∈ argmax

a∈Ai

Q(st, a)

7: Observe ri,t+1 and next state st+1

8: Qi(st, ait)← Qi(st, ait) + αi

[
ri,t+1 + δimax

a′∈Ai

Qi(st+1, a
′)−Qi(st, ai)

]
9: end for

10: end while
11: end for

B. Exploration Versus Exploitation

A fundamental challenge in reinforcement learning is striking a balance between ex-

ploiting known actions that yield immediate rewards and exploring alternative actions

that may lead to greater returns in the future. This balance, known as the exploration-

exploitation trade-off, is a central theme in reinforcement learning (Hu (2023)). Algo-

rithms must navigate this trade-off to maximize the expected discounted cumulative

return, avoiding over-reliance on exploitation, which prioritizes short-term gains at the

expense of uncovering potentially superior long-term strategies.

A commonly used method is the ϵ-greedy algorithm, which balances exploration and

exploitation by making action selections a stochastic process. With probability ϵ, the

algorithm explores by selecting a random action ait ∈ Ai, while with probability 1− ϵ,

it exploits by choosing the best-known action for a given state st. This paper employs a

modified ϵ-greedy strategy with time decay, which encourages greater exploration during

the initial stages of learning and gradually shifts toward exploitation as the algorithm

becomes more familiar with the environment. Specifically, the exploration probability

decays exponentially as e−βt, where t is the time period and β controls the rate of decay.

This ensures that the algorithm explores more extensively early in each episode while

increasingly favoring exploitation as learning progresses. This exploration strategy is

used by the sellers competing in Bertrand price competition.

Another well-known exploration approach is the Upper Confidence Bound (UCB)

method (Auer (2002)). Unlike the decaying ϵ-greedy strategy, UCB balances explo-

ration and exploitation by augmenting the estimated reward with an uncertainty term.

Specifically, for each action a, the UCB is computed as

UCBit(s, a) = Qi(st, a) +

√
2 log(t)

Nit(a)
,
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where Qi(st, a) is the estimated return for agent i by taking action a ∈ Ai in state

s, t is the current time period, and Nit(a) is the number of times action a has been

selected by agent i by time period t. The term
√

2 log(t)
Nit(a)

serves as an exploration bonus,

being larger for actions that have been sampled less frequently, thus encouraging the

algorithm to explore these under-explored actions. The logarithmic factor log(t) ensures

that the bonus grows slowly with time, gradually shifting the focus toward exploitation

as more data is gathered. Moreover, the factor
√
2 is derived from theoretical guarantees

provided by Hoeffding’s inequality, which bounds the deviation of the estimated rewards

from their true values and ensures that the confidence interval is appropriately scaled.

This exploration strategy is used by the platform’s RS to balance the trade off between

exploration and exploitation. Thus, in each time period t, the platform chooses the

action at ∈ A such that

max
at∈A

UCBt(s, at).

C. Convergence

While convergence proofs exist for the Q-learning algorithm in single-agent systems,

the extension to multi-agent reinforcement learning (MARL) environments lacks similar

guarantees. To address this, I allow agents to engage in price competition for a maximum

of ten million time periods per episode. Convergence is assessed every 100 time periods

and is considered achieved when the optimal actions for both pricing algorithms remain

unchanged for 1,000 consecutive convergence checks. Formally, for each seller i and each

state s, if the set argmax
a∈Ai

Qi(a, s) remains consistent for these checks, convergence is

declared. This criterion effectively implies that no agent has had a differing optimal

action for each state for 100,000 consecutive time periods.

Although achieving convergence required many iterations, all E = 100 episodes

converged well before reaching the ten million time period limit. These dependencies

highlight the complexity of MARL systems to converge to profitable outcomes. However,

in practice these algorithms are likely pre-trained prior to being “put in the wild.”20

Then, they are deployed and allowed to learn “online” while being operational. This

greatly mediates the concern of Q-learning taking long times for convergence.

IV. Theoretical Model

This section outlines the theoretical model in which each firm uses an algorithm (Q-

learning) to update their prices while the platform they operate on uses an algorithm

(Q-learning) for product recommendations. The stage game between sellers on the

platform models price competition via a multinomial logit model with heterogeneous

consumers in a differentiated product market.

20For instance, see https://www.fetcherr.io/technology.
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A. Differentiated Product Market

There are n ≥ 2 firms, each selling a single differentiated good on a platform. Firms

i ∈ {0, 1, 2, . . . , n}, with i = 0 representing the outside option, have a marginal cost ofmc

while paying royalty share f ∈ [0, 1] of their revenues in each time period t ∈ {0, 1, 2, . . .}
to the platform. This implies their effective marginal cost is given bymc/(1−f).21 Firms

engage in an infinitely repeated Bertrand-Markov pricing game where they set prices

pit simultaneously and condition these actions on one-period past history as well as the

prior period recommendation by the RSs.

In each time period t, consumers enter the market wishing to buy at most one

product. Consumers of type j ∈ {1, 2, . . . , k} account for a share γj ∈ [0, 1] of consumers

in the market with

k∑
j=1

γj = 1. All consumers of each type j spend one period in the

market, exit, and are then replaced by new a set of consumers of this type. These

consumers of type j who buy product i in time period t obtain utility

uijt = aij − θjpit − cj + ϵijt.

aij is consumer type j’s perception of the quality of firm i’s product capturing vertical

differentiation as well as explicitly modeling preference heterogeneity, θj is a price sensi-

tivity index for consumers of type j, and ϵijt is assumed to be independent (over i and j)

type I extreme value distributed random variable with common scale parameter µ > 0.

Moreover, cj is a “search” cost associated with consumer type j if they choose to explore

alternate options besides their recommended product (further elucidated below). The

purpose of the search cost is so consumers are better off when they are shown only their

preferred product rather than when they are able to see all available options. When a

consumer of type j buys no product in period t, they obtain the outside option utility

of u0jt = ϵ0jt.

In each time period t, the platform uses a recommendation algorithm to choose which

product i to display to each consumer type j. Out of these consumers, it is assumed

a share τ choose between the recommended product and the outside option while the

remaining 1 − τ share “search” and then choose between all products as well as the

outside option. This 1− τ share incurs a search cost cj which acts as a disutility term

for searching. If the set of consumers firm i is recommended to is Jit ⊆ {1, 2, . . . , k},
firm i’s demand in period t is given by

dit = τ
∑
j∈Jit

γj
exp

(
aij−θjpit

µ

)
1 + exp

(
aij−θjpit

µ

) + (1− τ)

k∑
j=1

γj
exp

(
aij−θjpit−cj

µ

)
1 +

n∑
h=1

exp

(
ahj − θjpht − cj

µ

) ,

21See the appendix for a derivation of the Bertrand-Nash and Joint-Collusive outcomes.
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where a0 is an inverse index of aggregate demand since product 0 is considered the

outside option. Upon each firm i selecting an action pit in their action space Ai at time

period t, they receive profit

πit = ((1− f)pit −mc) dit

and transition to the next state st+1. Consumer surplus at time period t is given by

Ut = µ

[
τ

n∑
i=1

∑
j∈Jit

γj
θj

ln

(
1 + exp

(
aij − θjpit

µ

))

+ (1− τ)
k∑

j=1

γj
θj

ln

(
1 +

n∑
i=1

exp

(
aij − θjpit − cj

µ

))]
.

For a given ω ∈ [0, 1], the platform’s payoff in period t is

Πt = ω

(
f

n∑
i=1

pit ∗ dit

)
+ (1− ω)Ut,

which represents a weighted sum of royalty revenues for the platform, f
n∑

i=1

pit ∗ dit,

and consumer surplus, Ut. A platform would want to put weight on consumer surplus

each time period to become more attractive to consumers which would lead to further

competition across platforms. Doing so could effectively lead to increased consumer

network effects thereby increasing profits in the long term.

Notably, the figures in the results section will show that equilibrium prices are an

increasing function of τ . As τ increases, firms rely more on recommended consumers,

who exhibit lower price sensitivity compared to the full market. Since these consumers

are more likely to purchase from the recommended firm regardless of small price changes,

demand becomes less elastic. This allows firms to charge higher prices without losing as

many sales. Additionally, because the weight on the competitive demand term decreases,

firms face weaker price competition, further driving up equilibrium prices. Consequently,

a higher τ leads to a softening of price competition and results in higher equilibrium

prices.

B. State and Action Spaces for the Sellers and Platform

To ensure the seller’s state space is finite, I use a bounded memory of length qi

for each seller i and memory of length q for the platform so that a given state can

be represented as sit =
{(

pt−1, rt−1

)
, . . . ,

(
pt−qi , rt−q

)}
where each pt−h ∈

n

×
i=1

Ai for

1 ≤ h ≤ qi is the vector of all firm prices set in period t− h and rt−h ∈ A for 1 ≤ h ≤ q

is the platform’s recommendation decision in period t − h where A is the platform’s
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action space. Unless noted otherwise, I assume qi = 1 for each seller i and q = 1

for the platform so that sit =
(
pt−1, rt−1

)
. Notably, the state space Si =

n

×
i=1

Ai × A,

with cardinality |Si| = mn·qi
i × mq, is completely characterized by all possible price

combinations each firm can set with |Ai| = mi and |A| = m. Given qi = 1 for each seller

i, each seller bases its choice of actions at time period t on the history of each sellers’

actions and the platform’s recommendation at time period t − 1 meaning they have

a one period recall. When considering collusive behavior of Q-learning, the algorithm

requires a discrete number of possible actions. Thus, I discretize the action space Ai

for each seller i to contain fifteen equally spaced price points from the minimum to the

maximum price firm i can set. These minimum and maximum prices are 1.0 and 2.1,

respectively, which contain both the Bertrand-Nash and Joint-Collusive prices.

To ensure the platform’s state space is finite, it is assumed to have a bounded

memory of length q. At any time period t, the platform’s state is represented as st ={(
pt−1, rt−1

)
, . . . ,

(
pt−qi , rt−q

)}
, where each pt−h ∈

n

×
i=1

Ai for 1 ≤ h ≤ qi and rt−h ∈ A

for 1 ≤ h ≤ q. Unless noted otherwise, I assume q = 1 so that st =
(
pt−1, rt−1

)
. Notably,

the state space S is the same for the platform as the firms and, consequently, the sellers

and the platform have symmetric information when making decisions. Regarding the

platform’s action space A, it consists of all possible product recommendations to each

consumer type j and has cardinality |A| = nk where n is the number of sellers in

the market and k is the number of consumer types. Given q = 1, the platform bases

its recommendation at time period t on sellers’ previously set prices along with the

recommendation at time period t− 1 meaning it has a one period recall.

C. Baseline Model Parameters

Unless otherwise noted, the economic environment consists of a symmetric duopoly

(n = 2) able to set mi = 15 possible prices each separated by step size ν = (2.1 −
1.0)/(m−1). This means each firm’s pricing space is identical so that Ai = A−i for each

i and, consequently, Si = S−i. These firms have constant marginal cost mc = 1 while the

inverse index of aggregate demand a0 = 0 and horizontal differentiation index µ = 1/4.22

The firms act on a single platform with profit weight ω ∈ {0, 4/5, 1} and royalty share

f = 0.2 containing two different consumer types (k = 2) each with equal presence in the

market (γj = 0.5), identical price sensitivity (θj = 1), and identical search cost disutility

(cj = 1/4). In each period, a share τ = 3/4 only see the recommended product. The

value for this parameter is partially justified by the finding in Musolff (2024) indicating

83% of Amazon purchases go via the Buy Bux (the recommended product). The product

22When µ = 0, goods are homogeneous (perfect substitutes).
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preference matrix is defined as

a =

[
2 1.9

1.9 2

]
,

where rows correspond to sellers i and columns correspond to consumer types j. In this

case, type j = 1 prefers seller one to seller two while the converse holds for type j = 2 on

average for similar prices. Q-learning parameters for each firm and the single platform

are fixed at δi = δ = 0.95 and αi = α = 0.95. The ϵ-greedy exploration parameter for

the sellers are fixed at βi = 10−5. Recall for all sellers and the platform is qi = 1 for

each seller i, as well as q = 1 for the platform. These parameters are also listed in Table

A.1. in the appendix.

The platform can make four possible recommendations given |A| = nk = 4. These

actions are given in Table 1:

Table 1. Platform Actions for n = 2 Sellers and k = 2 Consumer Types

Action Type j = 1 Recommendation Type j = 2 Recommendation

1 {1} {1}
2 {1} {2}
3 {2} {1}
4 {2} {2}

Each seller’s Q-matrix is an element in R|Si|×R|Ai| (900× 15 matrix). At t = 0, the

Q-matrix for firm i is initialized with the average profits associated with its actions in Ai,

conditional on the actions selected by the opposing firm in A−i and by the platform from

A. These initial values are scaled by 1/(1− δ) to approximate the expected discounted

future payoffs for actions taken at the outset. This structure reflects the state and

action spaces available to each agent, illustrating the complexity of the decision-making

environment even in this simplified setup.

Similarly, the platform’s Q-matrix is an element in R|S| ×R|A| (900× 4 matrix). At

t = 0, it is initialized using the average profits associated with its actions in A. As with
the sellers, these values are scaled by 1/(1− δ) to represent expected future payoffs.

Furthermore, I allow the agents to interact for E = 100 episodes and subsequently

average results over these episodes. It is crucial to underscore that the algorithms under

examination operate in a knowledge vacuum concerning the economic environment,

possessing only the capacity to compute profits.
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V. Results

A. Without RS

It is essential to demonstrate that even in the absence of a platform’s RS, sell-

ers employing AI-based pricing algorithms can still achieve supracompetitive behavior.

Without this possibility, the inquiry into the effectiveness of an RS in mitigating such

outcomes would be rendered void. To investigate this, I model Bertrand–Markov pricing

competition between two sellers on a platform that does not implement an RS. In this

setting, each consumer type j ∈ {1, 2} can observe every product in each time period

t (with the demand framework as specified in Section IV.A, where τ = 0). This setup

mirrors the approach taken by Calvano et al. (2020), with the added refinement of ex-

plicitly modeling preference heterogeneity among heterogeneous consumers through the

product preference matrix a. Moreover, the “search” cost cj remains in this setup. Here,

one can interpret cj as a disutility factor for having to choose among a list products

rather than being shown only their preferred option.

Given the absence of platform recommendations, the seller’s state space must be

revised accordingly. Specifically, the platform action dimension is removed, and each

seller now bases its pricing decisions solely on the prior period’s prices. This results in

a state space size of |Si| = mn∗qi
i = 225, and consequently, each seller’s Q-matrix is of

dimension 225× 15.

Table 2. Outcomes At Convergence.

Total Output Average Prices Consumer Surplus
Bertrand-Nash 0.715 1.648 0.314
No RS 0.659 1.714 0.270

Note: These results represent averages over the last 100,000 time periods prior to con-
vergence.

Table 2 reveals the outcomes the pricing algorithms converged to along with the

Bertrand-Nash level while Figure 1 illustrates the learning trajectory of the main out-

comes of interest. Both show that simple AI-based pricing algorithms can successfully

converge to supracompetitive outcomes within the specified economic environment. In

summary, this section demonstrates that sellers engaged in a Bertrand–Markov pricing

game can learn to achieve supracompetitive outcomes even in the absence of a platform’s

RS, while operating in a market characterized by heterogeneous consumer preferences.
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Figure 1. Learning Curves for Consumer Surplus (Left Panel), Prices (Middle Panel),
and Total Output (Right Panel).

Note: Prices are averaged across sellers. Total output represents the sum of each
seller’s market share. Each panel displays the median value across all episodes, with

the shaded area representing the interquartile range (IQR).

B. With RS (No Learning)

Although many recommendation systems (RSs) are now employing AI-driven tech-

niques, a considerable number still operate using purely procedural, rule-based algo-

rithms. To explore their potential in mitigating supracompetitive behavior, I analyze

two such RSs defined by distinct recommendation rules:

NL1. Recommend the seller i with the highest aij for a given consumer type j at time

period t.

NL2. Recommend the seller i that maximizes aij − pit for a given consumer type j at

time period t.

Even though the platform does not have direct access to the parameter aij , this

framework allows us to assess whether such straightforward rule-based approaches can

mitigate supracompetitive conduct without employing a learning mechanism. If an RS

equipped with a learning component can eventually replicate the potentially favorable
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outcomes achieved by these rules, it would demonstrate that autonomous mitigation of

anticompetitive behavior is attainable solely through the learning of consumer prefer-

ences. The next section examines this possibility in greater detail.

Table 3 summarizes the outcomes at convergence for these two algorithms, labeled

NL1 (No Learning 1) and NL2 (No Learning 2). The results clearly indicate that in-

corporating price information into the recommendation rule—as in NL2—leads to lower

prices and higher consumer welfare compared to NL1. This finding underscores that a

rule-based algorithm relying exclusively on consumer preference data is insufficient to

counteract supracompetitive outcomes.

Table 3. Outcomes at Convergence

Total Output Average Prices Consumer Surplus
Bertrand-Nash 0.627 1.839 0.249
NL1 0.603 1.864 0.233
NL2 0.737 1.706 0.340

Note: These results represent averages over the last 100,000 time periods prior to con-
vergence.

In the following section, I extend the analysis by endowing the RS with a learning

(AI) component. This extension investigates whether the benefits observed in NL2 can

be autonomously achieved while the RS relies solely tries to maximize profits through

learning correct product recommendations. Such an outcome would indicate that au-

tonomous mitigation of anticompetitive behavior is possible by learning product prefer-

ences.

C. With RS

Table 4. Outcomes At Convergence.

Total Output Average Prices Total Revenues Consumer Surplus
Bertrand-Nash 0.627 1.839 0.922 0.249
No RS 0.659 1.714 0.904 0.270
NL1 0.603 1.864 0.900 0.233
NL2 0.737 1.706 1.004 0.340
AI, ω = 0 0.751 1.682 0.999 0.360
AI, ω = 4/5 0.744 1.697 1.002 0.349
AI, ω = 1 0.713 1.735 0.984 0.319

Note: These results represent averages over the last 100,000 time periods prior to con-
vergence. The Bertrand–Nash outcome corresponds to the case of with the RS (τ = 3/4),
where the platform recommends seller one to consumer type one and seller two to con-
sumer type two.
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Figure 2. Learning Curves for Consumer Surplus (Left Panel), Prices (Middle Panel),
and Total Output (Right Panel).

Note: Prices are averaged across sellers. Total output represents the sum of each
seller’s market share. The Bertrand–Nash and Joint–Collusive Outcomes correspond to

the case of with the RS (τ = 3/4), where the platform recommends seller one to
consumer type one and seller two to consumer type two. Each panel depicts the median

value across all episodes, with the shaded area representing the interquartile range
(IQR).

This section examines the baseline scenario in which two sellers utilize pricing algo-

rithms on a platform that employs an RS. Table 4 shows the level of consumer surplus,

prices, and total ouput achieved at convergence while Figure 2 illustrates the evolu-

tion of these variables as the pricing algorithms learn within the economic environment.

Notably, none of these variables reach the Bertrand–Nash outcome, indicating that

the platform’s RS is effective not only in mitigating supracompetitive behavior, but

also in substantially impeding the learning process of the pricing algorithms. As an-

ticipated, consumers benefit more when the platform completely prioritizes consumer

surplus (ω = 0) rather than solely focusing on seller revenues (ω = 1). Interestingly,

there is only a marginal difference between the cases of ω = 0 and ω = 4/5, suggesting

that even when the platform heavily weights revenues in its objective function, seller

pricing algorithms struggle to learn optimal behavior. Lastly, one can get a sense into
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how the RS benefits the platform across all values of ω by looking at total revenues

in Table 3 which are significantly above total revenues when the platform does not use

an RS. This indicates the use of an RS does not only benefits consumers by inhibiting

supracompetitive prices, but the platform as well.

Figure 3 presents the learning trajectories of the platform’s executed actions. The

graph demonstrates that the RS successfully learns to select the action that maximizes

the platform’s profits—averaged across all possible combinations of seller prices—while

also aligning with consumer preferences by recommending their preferred product. More-

over, as the platform places greater emphasis on seller revenues (i.e., as ω → 1), it in-

creasingly opts for the profit-maximizing action. Interestingly, although the frequency

of the consumer-preferred action increases slightly when the platform solely prioritizes

seller revenues compared to when it focuses on consumer surplus (by roughly ten percent-

age points), the overall benefit to consumers is much higher when the platform prioritizes

consumer welfare. This implies that the advantage from lower prices, achieved when the

platform emphasizes consumer surplus, more than compensates for any loss associated

with receiving a suboptimal recommendation.

Figure 3. Proportion of Executed Platform Action Across Varying ω Values.

Note: Action 2 represents the platform’s profit-maximizing action on average.
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Figure 4. Ratio of Consumer Surplus (Left Panel), Prices (Middle Panel), and Total
Output (Right Panel) to the Bertrand-Nash Outcome Across a Grid of 100 a21 and a12

Values.

Note: Prices are averaged across sellers. Total output represents the sum of each
seller’s market share. With the RS, the Bertrand–Nash outcomes are for the τ = 3/4
case where the platform recommends seller one to consumer type one and seller two to
consumer type two. Without the RS, the Bertrand-Nash Outcome is the τ = 0 case.

Figure 4 depicts how explicitly increasing preference heterogeneity through the prod-

uct preference matrix (a) alters outcomes achieved when the platform uses an RS and

when it does not, for varying ω ∈ {0, 4/5, 1}. Evidently, without an RS, increasingly

similar preferences through this product preference matrix makes pricing algorithms able

to reach supracompetitive outcomes more easily, as evidenced by the middle panel where

prices are above the Bertrand-Nash outcome for a12 = a21 > 1.5. Thus, as consumer

preferences become more diversified, e.g., non-diagonal elements of the product prefer-

ence matrix tend to one, autonoumous algorithmic anticompetitive behavior becomes

increasing difficult. When the platform uses an RS, the trends of relative consumer

welfare, prices, and total output align with intuition in that as competition increases,

meaning as a12 and a21 approach 2, prices relative to the Bertrand-Nash benchmark

are driven down. Given the platform is correctly recommending seller one to consumer

type one and seller two to consumer type two, as both a12 = a21 → 2, consumer welfare
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should rise along with total output as competition intensifies.

Figure 5. Proportion of Executed Platform Action Across Varying ω Values Across a
Grid of 100 Values of a21 and a12 Values.

Note: Action 2 represents the platform’s profit-maximizing recommendation on
average.

Figure 6 illustrates how consumer surplus, prices, and total output change as the

search cost parameter, cj , varies from 0 to 1/2 for each consumer type j. The midpoint,

cj = 1/4, serves as the baseline specification. As search costs increase, consumers who

explore beyond their recommended product experience greater disutility, reinforcing the

RS’s role in efficiently matching consumers with sellers that best meet their preferences.

In all cases, consumer welfare and total output with the RS remain well above the

Bertrand-Nash benchmark, whereas those without the RS consistently fall below it.

Notably, as search costs rise, consumers benefit more from accurate recommendations,

as the value of being matched with the right product increases. As shown in Figure 7, the

RS successfully directs consumers to their ideal product the majority of the time, further

enhancing their welfare particularly when they place high value on being recommended

their ideal product.
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Figure 6. Ratio of Consumer Surplus (Left Panel), Prices (Middle Panel), and Total
Output (Right Panel) to the Bertrand-Nash Outcome Across a Grid of 100 c Values.

Note: Prices are averaged across sellers. Total output represents the sum of each
seller’s market share. With the RS, the Bertrand–Nash outcomes are for the τ = 3/4
case where the platform recommends seller one to consumer type one and seller two to
consumer type two. Without the RS, the Bertrand-Nash Outcome is the τ = 0 case.
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Figure 7. Proportion of Executed Platform Action Across Varying ω Values Across a
Grid of 100 Values of Across a Grid of 100 c Values.

Note: Action 2 represents the platform’s profit-maximizing recommendation on
average.

Figure 8 illustrates the evolution of the primary outcome variables relative to the

Bertrand-Nash benchmark as τ → 1. As a larger proportion of consumers follow the

recommendation algorithm—opting predominantly for their preferred products, as con-

firmed by Figure 9—both consumer welfare and total output significantly surpass the

Bertrand-Nash levels, while prices concurrently drop below this benchmark. These find-

ings imply that even moderate adherence to product recommendations (approximately

above 10%) effectively mitigates autonomous algorithmic anticompetitive behavior, ul-

timately benefiting consumers and enhancing overall welfare.
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Figure 8. Ratio of Consumer Surplus (Left Panel), Prices (Middle Panel), and Total
Output (Right Panel) to the Bertrand-Nash Outcome Across a Grid of 100 τ Values.

Note: Prices are averaged across sellers. Total output represents the sum of each
seller’s market share. Without the RS, the Bertrand-Nash Outcome is the τ = 0 case.
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Figure 9. Proportion of Executed Platform Action Across Varying ω Values Across a
Grid of 100 Values of τ Values.

Note: Action 2 represents the platform’s profit-maximizing recommendation on
average.

Figure 10 shows how the ratios of seller one and seller two prices to the Bertrand–Nash

outcomes evolve as the share of type one consumers (γ1) approaches one for varying val-

ues of type one’s price sensitivity (θ1). Since each unique (γ1, θ1) pair yields a unique

equilibrium, this analysis involves computing the Bertrand–Nash outcome for every

pair and then evaluating the corresponding ratios. In general, prices remain below the

competitive outcome when the platform uses an RS while being above the competitive

benchmark without it, except in edge cases where they are approximately equal to the

Bertrand–Nash level. As γ1 → 1, the relative price for seller one diverges downward,

while the opposite trend is observed for seller two. This is because, with the pricing

algorithm’s objective being profit maximization, seller one—enjoying a dominant share

of consumers—can afford to lower prices while still maintaining high profit levels. Con-

versely, seller two, which loses nearly all consumer preference as γ1 approaches one, must

increase its prices to compensate for the diminished recommended demand.
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Figure 10. Ratio of Seller One Prices (Top Panel) and Seller Two Prices (Bottom
Panel) to the Bertrand–Nash Outcomes Across a Grid of 100 γ Values.

Note: With the RS, the Bertrand–Nash outcomes are for the τ = 3/4 case where the
platform recommends seller one to consumer type one and seller two to consumer type

two. Without the RS, the Bertrand-Nash Outcome is the τ = 0 case.

Figure 11 extends this analysis to relative consumer surplus. As expected, consumer

welfare declines as the price sensitivity of consumer type one increases, particularly when

γ1 → 1. Moreover, even when the platform completely disregards consumer welfare

(ω = 1), the resulting consumer surplus remains substantially above the competitive

benchmark—gains of up to approximately 40%—and these gains increase to roughly

70% when consumers are less price sensitive.
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Figure 11. Ratio of Consumer Surplus to the Bertrand–Nash Outcome Across a Grid
of 100 γ Values.

Note: With the RS, the Bertrand–Nash outcomes are for the τ = 3/4 case where the
platform recommends seller one to consumer type one and seller two to consumer type

two. Without the RS, the Bertrand-Nash Outcome is the τ = 0 case.

D. Endogenous τ

A critical aspect of my model is the parameter τ , which governs the share of consumers

that choose their recommended product versus those that choose to view all available

alternatives. Thus far, τ has been set exogenously. In reality, it is likely that consumers

who view searching through alternatives as costly will be more likely to select their

recommended option and not elect to browse all available options. To that end, I

endogenize τ with respect to the search cost cj for each consumer type j and assume

consumers search in a simultaneous fashion.
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First, recall the equation for aggregate consumer surplus at time t is given by

Ut = µ

[
τ

n∑
i=1

∑
j∈Jit

γj
θj

ln

(
1 + exp

(
aij − θjpit

µ

))

+ (1− τ)
k∑

j=1

γj
θj

ln

(
1 +

n∑
i=1

exp

(
aij − θjpit − cj

µ

))]
.

Since each consumer type j is only recommend a single firm i in each time period, the

expected consumer welfare j gets from its recommendation i in this time period is

E
[
U rec
jt

]
= µ ln

(
1 + exp

(
aij − θjpit

µ

))
,

while

E
[
U search
jt

]
= µ ln

(
1 +

n∑
i′=1

exp

(
ai′j − θjpi′t − cj

µ

))

represents the expected consumer surplus for type j at time t from searching.23

Denote c∗j as the value at which consumer type j is indifferent between following the

recommendation and searching. By setting the two above expected consumer welfares

equal to each other and solving for c∗j , it follows that

c∗j = µ ln


n∑

i′=1

exp

(
ai′j − θjpi′t

µ

)
exp

(
aij−θjpit

µ

) .


Consumers of type j will search more as their indifference point c∗j decreases, while

electing their recommended option as this cutoff rises. I assume cj ∼ U[0, 1], implying

that F
(
c∗j

)
= P

(
cj ≤ c∗j

)
= c∗j . Given τj is the share of consumers of type j who follow

the recommendation, i.e., those consumers with cj > c∗j , it follows that τj is inversely

related to c∗j such that

τj =


1 if c∗j ≤ 0

1− c∗j if 0 < c∗j < 1

0 if c∗j ≥ 1.

23Note, the γj/θj terms are not shown here because these expressions represent the expected utility
of a single type j consumer. The γj (population weight) and θj (marginal utility of income) only appear
when aggregating over types to compute total consumer surplus in money-metric terms.
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Table 5. Outcomes At Convergence for Endogenous τ .

Total Output Average Prices Total Revenues Consumer Surplus
NL1 0.603 1.864 0.900 0.233
NL2 0.737 1.706 1.004 0.340
AI (Fixed τ), ω = 0 0.751 1.682 0.999 0.360
AI (Fixed τ), ω = 4/5 0.744 1.697 1.002 0.349
AI (Fixed τ), ω = 1 0.713 1.735 0.984 0.319
AI (Endogenous τ), ω = 0 0.765 1.655 0.990 0.393
AI (Endogenous τ), ω = 4/5 0.757 1.674 0.991 0.379
AI (Endogenous τ), ω = 1 0.709 1.732 0.967 0.330

Note: These results represent averages over the last 100,000 time periods prior to con-
vergence.

E. Learning Parameter Robustness

A core component of any AI-driven pricing algorithm is the set of learning parameters

that shape its behavior. To assess their influence, I evaluate algorithmic performance in

the baseline environment by varying these parameters over a grid of 75 (α, β) combina-

tions, representing different learning rates and degrees of experimentation.
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Figure 12. Ratio of Consumer Surplus to the Bertrand–Nash Outcome Across a Grid
of (α, β) Pairs.

Note: The Bertrand–Nash outcomes are for the τ = 3/4 case where the platform
recommends seller one to consumer type one and seller two to consumer type two. The

grid has 75 values of both α and β giving rise to 5,625 unique (α, β) pairs.

Figure 12 reports consumer surplus relative to the Bertrand–Nash benchmark, while

Figure 13 shows the frequency with which the platform selects action 2—its profit-

maximizing recommendation on average. The results indicate that the platform con-

sistently chooses the optimal action across a wide range of learning parameters. More

importantly, consumer surplus remains substantially above the Bertrand–Nash outcome

(by at least 22%) in all cases, including when the platform fully prioritizes profits

(ω = 1). These findings reinforce the robustness of the main result: the platform’s

RS mechanism effectively curbs supracompetitive pricing, even when the underlying

algorithms vary in how aggressively they learn and explore.
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Figure 13. Proportion of Platform Executing Action 2 Across a Grid of (α, β) Pairs.

Note: Action 2 represents the platform’s profit-maximizing recommendation on
average. The grid has 75 values of both α and β giving rise to 5,625 unique (α, β)

pairs.

VI. Conclusion

This paper investigates algorithmic pricing, recommendation systems (RSs), and com-

petition through a model of Bertrand-Markov competition among firms using Q-learning

pricing algorithms, alongside an AI-powered recommendation system (RS) strategically

influencing consumer product visibility. The analysis provides a core insight into how

pricing algorithms can perform when acting on a platform using an AI-based RS. Intro-

ducing this RS significantly alters market dynamics by actively mitigating the ability

of pricing algorithms to tacitly reach supracompetitive outcomes. The RS, driven by

consumer preferences and price information, disrupts the stability of anticompetitive lev-

els, compelling pricing algorithms toward prices even below the competitive benchmark.

This occurs even when the platform prioritizes seller profits exclusively, underscoring the

robust pro-competitive effect of RSs. Notably, this result holds across diverse consumer

heterogeneity, market, and learning parameter conditions, demonstrating the significant

pro-competitive effects RSs can product in digital markets.
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These findings carry significant policy implications for regulators addressing compet-

itive concerns in such digital economies. The results suggest that regulatory attention

should perhaps shift toward overseeing platform-level RSs rather than exclusively tar-

geting sellers’ individual pricing algorithms. Enhanced oversight of such RSs could

promote competitive pricing behaviors like shown in this paper, thereby improving con-

sumer welfare outcomes. Strengthening oversight of platform RSs may have at least two

positive impacts on the market: (1) lower prices and higher consumer welfare resulting

from inhibiting autonomous algorithmic supracompetitive behavior and (2) mitigating

platform self-preferencing, a topic not thoroughly discussed here, but of growing concern

among competition authorities.

Finally, while this paper utilizes reinforcement learning-based RSs, the findings mo-

tivate further investigation into more commonly used non-RL-based recommendation

systems, such as collaborative filtering algorithms. Given their widespread application,

understanding whether these standard RSs similarly mitigate or exacerbate algorithmic

anticompetitive conduct would offer valuable insights for policy development. Future re-

search exploring these additional dimensions will be crucial for comprehensive antitrust

policy recommendations in increasingly AI-driven marketplaces. Moreover, additional

research could extend this model by examining multi-platform competition, vertically

integrating the platform into the market, or empirically testing these theoretical predic-

tions with real-world data from digital platforms that use RSs and have sellers operating

with pricing algorithms.
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VII. Appendix

A. Baseline Specification

A..1 Baseline Parameters

The product preference matrix a is given by

a =

[
2 1.9

1.9 2

]

A..2 Without RS

Table A.2. Percentage Change from Bertrand-Nash Outcome

Average Seller 1 Seller 2

Profits 6.72% 6.69% 6.75%
Revenues -4.37% -4.30% -4.43%
Demand -7.89% -7.80% -7.99%
Prices 4.01% 4.00% 4.02%
CS -14.14%
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Table A.1. Economic environment parameters

Parameter Value

Number of firms (n) 2

Number of possible prices (mi) 15

Number of possible recommendations (m) 4

Price step size (ν) (2.1− 1.0)/(m− 1)

Firm pricing space (Ai = A−i) Identical

Firm state space (Si = S−i) Identical

Marginal cost (mc) 1

Inverse index of aggregate demand (a0) 0

Horizontal differentiation index (µ) 1/4

Consumer share who only see recommendation (τ) 3/4

Platform profit weight (ω) {0, 4/5, 1}
Royalty share (f) 0.2

Number of consumer types (k) 2

Proportion of consumer type 1 (γ1) 1/2

Price sensitivity (θj) 1

Search cost (cj) 1/4

Discount factor (δi, δ) 0.95

Learning rate (βi) 10−5

Exploration rate (αi, α) 0.15

Memory for sellers and platform (qi, q) 1

A..3 With RS

Table A.3. Percentage Change from Bertrand-Nash Outcome for Different ω Values

ω = 0 ω = 4/5 ω = 1

Average Seller 1 Seller 2 Average Seller 1 Seller 2 Average Seller 1 Seller 2

Profits -15.89% -15.68% -16.09% -12.76% -12.80% -12.72% -8.09% -8.18% -8.00%
Revenues 8.41% 7.66% 9.16% 8.60% 9.25% 7.95% 6.74% 7.06% 6.43%
Demand 19.85% 18.65% 21.04% 18.66% 19.64% 17.68% 13.73% 14.23% 13.22%
Prices -8.54% -8.14% -8.93% -7.70% -8.00% -7.39% -5.64% -5.76% -5.52%
CS 44.69% 40.35% 28.21%

Results averaged across E = 100 episodes and averaged over the last 100,000 time periods prior to
convergence within each episode.

B. Increased Platform Fee f

This section gives results upon convergence relative to the Bertrand-Nash level in-

creasing the platform royalty fee from f = 0.2 to f = 0.3. This percentage royalty fee

being increased leads to higher effective marginal cost mc/(1 − f) pushing equilibrium

prices upward.24 So, I increase the seller action space from m = 15 equally spaced

points between 1 and 2.1 to the same number points equally spaced between 1.3 and 2.4

meaning equilibrium prices are more centered in each seller’s action space.25 Consumer

24See the end of the appendix for further justification.
25See the next section of the appendix for results with this same action space and f = 0.2.
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welfare and prices remain below and above the Bertrand-Nash level without the plat-

form’s RS, respectively, while the opposite holds when the platform does implement an

RS.

B..1 Without RS

Table A.4. Percentage Change from Bertrand-Nash Outcome

Tot/Avg Firm 1 Firm 2

Profits 4.50% 4.47% 4.54%
Revenues -7.33% -7.28% -7.39%
Demand -10.32% -10.24% -10.39%
Prices 3.49% 3.48% 3.49%
CS -15.32%

B..2 With RS

Table A.5. Percentage Change from Bertrand-Nash Outcome for Different ω Values

ω = 0 ω = 4/5 ω = 1

Total/Avg Firm 1 Firm 2 Total/Avg Firm 1 Firm 2 Total/Avg Firm 1 Firm 2

Profits -12.36% -12.24% -12.47% -8.12% -8.32% -7.92% -7.56% -7.53% -7.58%
Revenues 10.81% 11.00% 10.61% 7.15% 7.10% 7.20% 4.95% 3.00% 6.91%
Demand 18.92% 19.15% 18.69% 12.50% 12.50% 12.50% 9.34% 6.69% 11.98%
Prices -5.58% -5.72% -5.44% -3.91% -4.00% -3.82% -2.95% -2.38% -3.53%
CS 34.68% 22.51% 17.06%

Results averaged across E = 100 episodes and over the last 100,000 time periods prior to convergence
within each episode.

C. Altered Seller Action Space

Given the Bertrand-Nash prices are relatively close to the upper bound of the baseline

pricing grid, I conduct the baseline analysis again using a discrete pricing grid of m = 15

equally spaced points between 1.3 and 2.4. Now, the midpoint is roughly equal to

competitive benchmark. This results in consumer welfare not reaching levels as high as

the baseline specification as prices are converging to slightly higher levels, but consumer

surplus is still well above the Bertrand-Nash level across all considered ω values. Thus,

autonomous algorithmic supracompetitive behavior is mitigated in this case as well.
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C..1 Without RS

Table A.6. Percentage Change from Bertrand-Nash Outcome

Tot/Avg Firm 1 Firm 2

Profits 9.45% 9.69% 9.21%
Revenues -8.42% -8.11% -8.72%
Demand -14.10% -13.78% -14.43%
Prices 6.92% 6.86% 6.98%
CS -23.69%

C..2 With RS

Table A.7. Percentage Change from Bertrand-Nash Outcome for Different ω Values

ω = 0 ω = 4/5 ω = 1

Average Seller 1 Seller 2 Average Seller 1 Seller 2 Average Seller 1 Seller 2

Profits -8.82% -8.93% -8.71% -7.95% -7.69% -8.22% -7.99% -6.79% -9.19%
Revenues 4.76% 6.17% 3.34% 3.19% 4.22% 2.15% 1.77% 1.79% 1.76%
Demand 11.15% 13.29% 9.01% 8.43% 9.83% 7.03% 6.37% 5.83% 6.91%
Prices -4.59% -5.27% -3.90% -3.49% -3.86% -3.12% -2.93% -2.77% -3.09%
CS 23.59% 18.51% 14.53%

Results averaged across E = 100 episodes and averaged over the last 100,000 time periods prior to
convergence within each episode.

D. Limited State Space

The baseline analysis with the RS considered the case of both seller’s and the plat-

form’s state in each period consisting of the prior period seller prices along with the

prior period platform’s recommendation. Here, I remove the platform recommendation

component of the state space so that both the pricing algorithms and the RS make ac-

tion decisions only based on the prior period seller prices. Results are fairly stable, with

consumer welfare and prices being well above and below the Bertrand-Nash benchmark,

respectively.

Table A.8. Percentage Change from Bertrand-Nash Outcome for Different ω Values

ω = 0 ω = 4/5 ω = 1

Average Seller 1 Seller 2 Average Seller 1 Seller 2 Average Seller 1 Seller 2

Profits -15.17% -14.15% -16.19% -11.73% -11.73% -11.72% -8.84% -9.54% -8.13%
Revenues 4.82% 5.76% 3.87% 5.19% 5.24% 5.15% 4.94% 3.75% 6.13%
Demand 14.23% 15.13% 13.32% 13.16% 13.23% 13.10% 11.42% 10.01% 12.84%
Prices -6.70% -6.64% -6.76% -5.94% -5.90% -5.98% -5.05% -4.96% -5.14%
CS 32.96% 29.12% 24.15%

Results averaged across E = 100 episodes and averaged over the last 100,000 time periods prior to
convergence within each episode.
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E. ϵ-Greedy RS Action Selection

The baseline specification considers the platform’s RS using the UCB action selection

mechanism. Of course, there are a variety of different ways bandit and RL agents can

make action selections. To that end, this section considers the RS using ϵ-greedy action

selection with experimentation parameter β = 10−5, meaning both the platform and

the sellers employ the same action selection strategy. The results show that while UCB

does better in terms of higher consumer welfare and lower prices, the core result of

a platform’s RS resulting in lower prices and higher consumer welfare relative to the

Bertrand-Nash benchmark still holds suggesting this core finding is robust to variations

in the action selection mechanism used by the RS.

Table A.9. Percentage Change from Bertrand-Nash Outcome for Different ω Values

ω = 0 ω = 4/5 ω = 1

Total/Avg Firm 1 Firm 2 Total/Avg Firm 1 Firm 2 Total/Avg Firm 1 Firm 2

Profits -14.14% -14.04% -14.24% -9.77% -9.87% -9.67% -4.95% -5.08% -4.81%
Revenues 7.64% 7.07% 8.20% 6.11% 5.66% 6.57% 3.44% 4.05% 2.83%
Demand 17.89% 17.01% 18.77% 13.59% 12.97% 14.22% 7.39% 8.35% 6.43%
Prices -7.43% -6.97% -7.89% -5.59% -5.50% -5.69% -3.07% -3.32% -2.81%
CS 39.55% 29.16% 15.14%

Results averaged across E = 100 episodes and over the last 100,000 time periods prior to convergence
within each episode.

F. Logit Equilibria

F..1 Bertrand-Nash

Theorem 1. Assume that the set of consumers firm i is recommended to is Jit ⊆
{1, 2, . . . , k}. The Bertrand-Nash equilibrium price for firm i is given by

p∗i =
mc

1− f
+

µ

τ
∑
j∈Jit

γjRij(p
∗
i ) + (1− τ)

k∑
j=1

γjSij(p
∗
i , p

∗
−i)


τ ∑

j∈Jit

γjθjRij(p
∗
i ) [1−Rij(p

∗
i )] + (1− τ)

k∑
j=1

γjθjSij(p
∗
i , p

∗
−i)
[
1− Sij(p

∗
i , p

∗
−i)
]

where

Rij(p
∗
i ) =

exp
(
aij−θjp

∗
i

µ

)
1 + exp

(
aij−θjp∗i

µ

) ,
Sij(p

∗
i , p

∗
−i) =

exp
(
aij−θjp

∗
i−cj

µ

)
1 +

n∑
h=1

exp

(
ahj − θjp

∗
h − cj

µ

) ,

mc is firm i’s marginal cost, and f is the royalty fee paid to the platform.
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Proof. Firm i’s profit is given by

πi = ((1− f)pi −mc) di = (1− f)pidi −mcdi.

where

di = τ
∑
j∈Jit

γjRij(pi) + (1− τ)
k∑

j=1

γjSij(pi, p−i).

The first order condition is

∂πi
∂pi

= 0 ⇐⇒ (1− f)di + (1− f)pi
∂di
∂pi
−mc

∂di
∂pi

= 0

⇐⇒ (1− f)di + [(1− f)pi −mc]
∂di
∂pi

= 0.

The derivative of di with respect to pi is

∂di
∂pi

=
∂

∂pi

τ
∑
j∈Jit

γjRij(pi) + (1− τ)

k∑
j=1

γjSij(pi, p−i)


=

τ
∑
j∈Jit

γj
∂Rij(pi)

∂pi
+ (1− τ)

k∑
j=1

γj
∂Sij(pi, p−i)

∂pi

 .

I will first focus the the derivative of demand from the recommended consumers with

respect to price.

∂Rij(pi)

∂pi
=

∂

∂pi

 exp
(
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µ
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1 + exp

(
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+
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+
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(
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Now, let us focus on the derivative of demand from all consumers in the market with
respect to price.

∂Sij(pi, p−i)

∂pi
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Putting everything together, it follows that

∂πi

∂pi
= 0 ⇐⇒ (1− f)di + [(1− f)pi −mc]

∂di

∂pi
= 0
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F..2 Joint-Collusive

Theorem 2. Assume that the set of consumers firm i is recommended to is Jit ⊆
{1, 2, . . . , k}. The joint-collusive equilibrium price for firm i is given by

p∗i =
mc
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∗
−i) =

exp
(
aij−θjp

∗
i−cj

µ

)
1 +

n∑
h=1

exp

(
ahj − θjp

∗
h − cj

µ

) ,

mc is firm i’s marginal cost, and f is the royalty fee paid to the platform.

Proof. Proof follows similarly to the proof of Theorem 1.
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