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Abstract

Algorithms are increasingly superseding humans in the pricing of goods and
services, enabling firms to adapt to shifting market dynamics with greater pre-
cision. Despite the widespread adoption of these algorithms, there remains a
scarcity of knowledge regarding their specific configurations and their impact
on competition. I assess whether asymmetric reinforcement learning-based
pricing algorithms can learn to engage in tacit collusion within a repeated
Bertrand-Markov pricing environment. My analysis reveals that diverse al-
gorithms can indeed learn to tacitly collude, consistently setting and sustain-
ing prices above competitive levels. This practice results in enhanced firm
profitability, while concurrently diminishing consumer welfare.
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I. Introduction

Artificial Intelligence (AI) is increasingly assuming responsibility for pricing goods

and services, relegating humans from this crucial task. This shift is expected to persist as

suppliers embrace algorithmic solutions that alleviate the traditional burden of manually

determining prices. However, the evolving landscape of algorithmic pricing introduces a

pressing concern—can these algorithms, inherently designed to optimize firm objectives,

inadvertently learn to collude?

To address this gap in understanding, my research builds on the experimental AI

pricing literature, aiming to investigate the question of whether algorithms with asym-

metric characteristics can learn to collude. By exploring the dynamics of diverse AI

agents engaging in price competition within an economic environment, this study con-

tributes to discerning the potential collusion risks associated with the proliferation of

algorithmic pricing in contemporary markets. The goal of this paper is to add to the
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current pricing algorithm literature along with the existing legal discourse surrounding

competition policy implications of algorithmic tacit collusion.

To explore the potential collusive effects arising from the interaction of diverse al-

gorithms, I adopt a methodological approach reminiscent of Calvano et al. (2020). In

this framework, agents engage in an infinitely repeated Bertrand-Markov pricing game

where they condition these actions on past history. This investigation incorporates a

realistic differentiated demand framework to model the stage game of pricing compe-

tition, leveraging the logit model which is unknown to the AI agent. This modeling

choice enhances the real-world applicability of the analysis, allowing for a more realistic

understanding of the collusive dynamics at play.

At the core of algorithmic pricing software lies the sophisticated realm of reinforce-

ment learning, a branch of machine learning that thrives on reinforcing actions yielding

high returns while discouraging otherwise less promising actions. While the well-known

Q-learning algorithm has been a focal point in understanding the dynamics of AI pricing

(Calvano et al. (2020); Klein (2021); Johnson, Rhodes, and Wildenbeest (2023)), it is

crucial to broaden our perspective to encompass a spectrum of reinforcement learning

algorithms. One such noteworthy counterpart to Q-learning is SARSA, sharing its fun-

damental principles, but diverging as an on-policy algorithm compared to the off-policy

nature of Q-learning (further elucidated in Section IV.). In the pursuit of a comprehen-

sive understanding, my investigation extends beyond the confines of identical Q-learning

agents to explore the collusion potential of SARSA interacting with Q-learning. The

exploration aims not only to discern if such behavior is attainable, but also to shed light

on the distinctive characteristics that define collusive actions within the framework of

reinforcement learning.

The learning dynamics observed over time reveal that the algorithms initially set

prices well below the competitive level. However, as they interact and gain a deeper

understanding of the economic environment, both prices and profits rapidly exceed the

competitive benchmark, while consumer surplus drops below it. This indicates that the

initial policies followed by the algorithms result in low collusion levels, but eventually

converge to an anticompetitive strategy. Notably, the collusive outcome observed at

convergence is approximately 45% higher than the competitive case, suggesting that

while full collusion is not achieved, significant anticompetitive behavior is evident. Ad-

ditionally, the collusive level achieved surpasses that of two SARSA agents, but falls

short of the collusion seen with two Q-learning agents in price competition. Given Q-

learning’s reputation as a more advanced algorithm, this result aligns with the findings of

Brown and MacKay (2023), which suggest that if even one firm adopts superior pricing

technology, all firms in the market benefit.

A key factor in the success of reinforcement learning—and machine learning in gen-

eral—lies in the underlying specifications, particularly the learning parameters. These

parameters shape the algorithm’s effectiveness, influencing both the policy it learns and
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the speed at which it grasps the economic environment. Specifically, three crucial pa-

rameters—the learning rate, the experimentation rate, and the discount factor—play

pivotal roles in determining the performance of reinforcement learning algorithms. To

explore this, I assess the collusive potential of different algorithms across a grid of 10,000

unique learning-experimentation parameter combinations. My results show that fine-

tuning these parameters can significantly shift outcomes, either well above or below

the collusive level attained in the baseline simulation, suggesting that optimal learning

configurations can drive results closer to fully supracompetitive levels. Additionally, to

introduce further asymmetry between the algorithms, I vary one algorithm’s discount

factor while holding the other constant and track their learning paths over time. This

experiment reveals two key findings: (1) collusive outcomes remain robust despite dif-

fering discount rates, and (2) certain configurations consistently yield higher levels of

collusion.

Achieving supracompetitive outcomes alone does not ensure a sustained collusive

outcome; a mechanism to maintain collusion is also required. To explore this, I test

whether the algorithms naturally implement trigger strategies without being explicitly

programmed to do so. In this experiment, the distinct algorithms are allowed to converge

to their policies, after which one is forced to deviate, and the response of the other is

observed. The results demonstrate that each algorithm is capable of employing a learned

trigger strategy: when one deviates, the other enforces a punishment severe enough

to deter further deviation. Shortly after, prices revert to their pre-deviation levels,

indicating that these trigger strategies are not grim but serve as effective, temporary

deterrents.

While duopoly markets provide a valuable foundation for studying algorithmic col-

lusion, it is essential to explore more complex environments. To this end, I introduce a

third algorithm and analyze their interactions. The results show that while the presence

of a third competitor weakens the collusive capacity of the algorithms, anticompetitive

behavior still persists. Moreover, the mechanism sustaining collusion remains intact,

suggesting that this behavior can endure even when one of the agents deviates, indicat-

ing that collusion remains sustainable in more competitive settings.

The crux of my findings lies in the revelation that asymmetric algorithms do exhibit a

capacity to learn and engage in tacit collusion, echoing the collusive behavior established

by their homogeneous counterparts. When SARSA and Q-learning agents engage in

price competition, they converge towards a policy consisting of supracompetitive profits

that are sustained through the employment of learned trigger strategies. These findings

are robust to a variety of specifications. The results in this paper largely corroborate

the existing experimental and empirical literature regarding tacit algorithmic collusion

as well as further justify the concerns of legal scholars and antitrust authorities.

These concerns lie in the potential collusive capacity of algorithms relative to hu-

man price setters (Calvano et al. (2019)). Unlike traditional antitrust concerns centered
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around firms communicating with an intent to collude, algorithmic collusion may occur

without direct instruction or communication (Harrington (2018)). Legal works such as

Ezrachi and Stucke (2017) and Ezrachi and Stucke (2020) have named such tacit col-

lusion scenarios as Artificial Intelligence and the Digital Eye, expressing great concern

regarding how current antitrust law may be deemed antiquated to handle these prob-

lems. Mazumdar (2022) agrees with the general consensus that the Sherman Act is likely

ill-equipped to handle algorithmic price fixing and argues that section 5 of the Federal

Trade Comission (FTC) Act may be better suited to do so as it provides a broader

means to handle antitrust issues. United States government officials are already taking

action to remedy the concerns of these and other legal scholars1 and the FTC is making

progress via discussions2 and notes3 while bringing charges to Amazon citing their al-

leged illegal use of pricing technology.4 This paradigm shift poses a challenge to antitrust

authorities, as their conventional means of prosecuting cartels through evidence of ex-

plicit communication may become obsolete as algorithms continue to supplant humans

in the pricing of goods and services.

Experimental studies, such as those conducted by Calvano et al. (2020) and Klein (2021),

have explored the collusion potential among identical AI agents. This research has

revealed that through repeated interactions with an unknown economic environment,

identical AI agents can converge to supracompetitive prices and profits by adapting and

learning over time based on the outcomes of their previous actions, similar to the idea

of an experience based equilibrium proposed in Fershtman and Pakes (2012). However,

it remains unclear whether heterogeneous algorithms—distinct AI systems with varied

architectures—can also learn to collude. Given the diverse nature of AI implementations

in real-world scenarios due to, for instance, differing investments in pricing technologies,

the assumption that firms utilize symmetric AI software for pricing is likely unrealis-

tic. This research fills that void in the literature by providing insight into asymmetric

algorithmic collusion.

This paper proceeds with a discussion of the prior literature, a primer on reinforce-

ment learning followed by detailing the specific algorithms deployed, a description of the

economic environment, the results of the research, and a section of concluding remarks

with possible future extensions.

1https://www.klobuchar.senate.gov/public/index.cfm/2024/2/klobuchar-colleagues-intro

duce-antitrust-legislation-to-prevent-algorithmic-price-fixing
2https://www.ftc.gov/media/70163
3https://www.ftc.gov/system/files/attachments/us-submissions-oecd-2010-present-other

-international-competition-fora/algorithms.pdf
4https://www.ftc.gov/news-events/news/press-releases/2023/09/ftc-sues-amazon-illegal

ly-maintaining-monopoly-power
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II. Literature Review

The literature on algorithmic pricing collusion unfolds across three distinct dimen-

sions: firstly, an exploration of antitrust concerns; secondly, experimental studies that

present compelling proofs-of-concept regarding the feasibility of tacit algorithmic col-

lusion; and thirdly, empirical investigations delving into the tangible effects of pricing

software on real-world market prices. Despite the valuable contributions from existing

studies, the literature remains relatively sparse, leaving ample room for further research

and insights. This section navigates through a comprehensive overview of prominent

studies that collectively shape our understanding of AI-based collusion.

In the realm of antitrust regulation, Section I of the Sherman Act comes into play

when firms engage in agreements to restrict competition. Traditionally, collusion among

humans involves a stepwise process as outlined by Harrington (2018): (1) communica-

tion between competitors regarding collusive intent and conduct, (2) mutual adoption

of collusive conduct, and (3) resultant higher prices. Enforcement of antitrust laws has

historically relied on tangible evidence of explicit communication to prosecute firms for

such violations. However, the landscape shifts significantly when it comes to algorith-

mic pricing. Unlike human collusion, the communication element is notably absent in

the deployment of AI pricing software, as firms may be unaware of the collusive poten-

tial inherent in these algorithms once operational. Harrington (2018) argues that AI

pricing software, autonomously learning collusive behavior without human intervention,

may not be deemed in violation of Section I of the Sherman Act. This raises a piv-

otal question: if AI agents indeed learn to collude, how should current antitrust law be

restructured to address this evolving challenge? While the second step of mutual adop-

tion in human collusion is elusive due to the inaccessibility of firm managers’ minds, the

scenario is different in the case of algorithmic collusion. Here, the code of AI pricing

software can be inspected and potentially tested for collusive conduct. This distinction

provides antitrust authorities with an unique avenue to construct a framework targeting

prohibited pricing algorithms. By establishing a set of algorithms deemed to have collu-

sive potential, antitrust authorities could conduct tests to determine their compliance,

ensuring a more adaptive and effective approach to regulating algorithmic collusion.

Embedded within the works of Mehra (2016), Ezrachi and Stucke (2017), Ezrachi

and Stucke (2020), Harrington (2018), and Mazumdar (2022), to name a few, is a cru-

cial concern: the necessity to establish whether algorithms have the inherent capacity

to learn collusion and, if so, what such collusive outcomes look like. This concern is

pivotal, as addressing a problem that does not authentically exist would render these

scholarly endeavors void. There is not a general consensus regarding this as works such

as Miklós-Thal and Tucker (2019) form a theoretical model showing that algorithmic

pricing can lead to lower prices and higher levels of consumer welfare. However, Calvano

et al. (2020) conduct a groundbreaking experiment, marking the first systematic study
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to investigate the learnability of collusion by AI pricing software. In a stylized environ-

ment featuring two firms utilizing symmetric Q-learning agents in simultaneous price

competition over a discrete pricing space, the authors unveil compelling findings. Their

study demonstrates that Q-learning algorithms not only have the potential to achieve

supracompetitive prices and profits, but can also effectively learn reward-punishment

schemes—a prerequisite for collusion. When a specific algorithm deviates in one pe-

riod by undercutting its competitor, the former agent is promptly punished in the next

period and prices quickly return to the non-competitive level seen prior to this devia-

tion. Although these algorithms fall short of attaining the joint-profit maximizing level,

they consistently converge to prices well above the static Bertrand-Nash equilibrium,

indicative of a departure from the purely competitive outcome. Notably, a few issues

exist that question the applicability this study has on real-world AI pricing collusion:

collusive tendencies decrease monotonically as the number of market participants rises,

convergence rates of Q-learning agents are incredibly slow, the Q-learning algorithm can

only handle a discrete action space, and the work represents only homogeneous algo-

rithms interacting. However, the seminal Calvano et al. (2020) study still represents a

compelling proof-of-concept for algorithmic collusion, shedding light on the dynamics at

play when AI pricing software engages in strategic interactions. The findings contribute

significantly to the ongoing discourse surrounding the implications and regulation of

algorithmic behavior in competitive markets.

While employing a simultaneous move framework, as utilized in both my study and

Calvano et al. (2020), provides valuable insights into the potential for algorithms to

acquire collusive behavior, Klein (2021) elevates this exploration by extending it to a

sequential move game. This sequential approach introduces a more dynamic setting,

enhancing our understanding of AI collusive behavior. In a setup akin to Calvano et

al., Klein considers two firms utilizing identical Q-learning agents. However, in Klein’s

sequential move game, firms now establish prices sequentially rather than simultane-

ously. Klein’s work not only reaffirms the findings of Calvano et al., but also adds depth

to our comprehension of algorithmic collusion. Through repeated interactions with the

environment, Q-learning algorithms in this sequential setup demonstrate an ability to

achieve supracompetitive prices and learn reward-punishment schemes. Interestingly,

Klein’s study finds that as the pricing space increases, prices display asymmetric Edge-

worth cycles similar to that discussed in Maskin and Tirole (1988). While these findings

are robust to variations in the discount factor and learning rate, a notable insight from

Klein’s investigation is that, similar to the simultaneous move setting, the collusive ca-

pacity of these algorithms diminishes as the number of firms in the market increases and

these Q-learning algorithms take remarkably long time to converge to supracompetitive

policies. Overall, this compelling paper contributes to the evolving discourse on algo-

rithmic collusion, providing valuable insights into how AI agents evolve in response to

varying market structures.
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Papers such as Mellgren (2020) and Hettich (2021) explore the collusive potential

of deep reinforcement learning (DRL) methods, specifically the deep Q-network (DQN)

formally introduced by Mnih et al. (2015) at Google DeepMind, and the investigation

of Frick (2023) using the Soft Actor-Critic, a novel algorithm developed by Haarnoja et

al. (2018) that learns both policies and value functions simultaneously while acting with a

continuum of actions, has yielded compelling insights. Importantly, Hettich and Frick re-

veal that DRL algorithms operating within a Bertrand-Markov pricing game exhibit evi-

dence of faster acquisition of supracompetitive profits and a reward-punishment scheme

compared to Q-learning agents alleviating a potent concern of Calvano et al. (2020)

and Klein (2021) to a certain degree. This suggests that more advanced algorithms

possess a heightened capacity to learn collusive behavior, outpacing their less sophis-

ticated counterparts. Notably, Mellgren (2020) investigates the collusive capacity of

deep Q-learning within a sequential move pricing game finding evidence of algorithms

achieving anti-competitive prices, but unable to learn reward-punishment schemes, a

necessary condition for collusion. Furthermore, Hettich (2021) examines the interplay

between Q-learning and DQN agents. The results indicate a strategic exploitation by the

DQN, effectively driving the Q-learning agent out of the market. Importantly, the study

discerns that the higher profits of the DQN agent do not necessarily signal collusive be-

havior, but stem from an enhanced market power. While this finding provides valuable

insights, it is acknowledged that DQNs are inherently more powerful than conventional

tabular-based reinforcement learning algorithms such as Q-learning, particularly when

the state space is large. Consequently, the test for collusive behavior among diverse

algorithms, limited to Q-learning and DQN, may not fully capture the nuances of col-

lusive behaviors. I extend and refine this investigation by broadening the spectrum of

algorithms considered to SARSA and Q-learning, two algorithms regarded as having

similar learning power, but with innate differences.

While experimental studies provide valuable insights into the potential for AI collu-

sion and elucidate the nature of collusive behavior, the current literature faces a notable

gap in empirical evidence substantiating the conclusions drawn from these experiments.

Intending to help address this void, Assad et al. (2024) contribute a pivotal empirical

study examining the capacity of algorithms to collude, utilizing high frequency retail

German gasoline pricing data. With the widespread availability of AI pricing software in

Germany from 2017 onwards, the authors confront the challenge of unobserved gasoline

station adoption of such software. To overcome this, they employ a novel test for adop-

tion, focusing on structural breaks in three key variables: the number of price changes

in a day, average size of price changes, and rival response time. To mitigate concerns

about endogeneity in station adoption, the authors utilize an instrumental variable and

two-way fixed effects approach. They employ the share of a given station’s brand that

adopted algorithmic pricing software as an instrument, addressing potential endogeneity

arising from unobserved station and time-specific factors, such as managerial skill and
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changing local market conditions. The results of their empirical analysis reveal com-

pelling evidence of collusive behavior. Specifically, adopting stations with competitors in

their ZIP code experience a statistically significant mean margin increase, while adopting

stations without competitors in their ZIP code show no statistically significant change

in mean margins. This outcome suggests that algorithmic collusion, facilitated by the

adoption of AI pricing software, influences margins through its impact on competition

among non-monopolist firms. The authors’ findings not only contribute crucial empiri-

cal evidence to the discourse on algorithmic collusion, but also lay a robust foundation

for future empirical research examining the real-world effects of algorithmic pricing on

competition.

III. Reinforcement Learning

A. Markov Decision Processes

As discussed in Hettich (2021), repeated Bertrand competition can be modeled via

a Markov decision process (MDP) giving rise to a Bertrand-Markov pricing game. In a

MDP tailored to reinforcement learning, the learner and decision maker, called the agent,

continually interacts with everything outside of the agent, called the environment, to

learn optimal behavior in order to maximize the expected cumulative discounted return

over time through its choice of actions. Note, the agent is unaware of the underlying

dynamics of the MDP and must learn about it; this is where reinforcement learning

comes into play. Reinforcement learning agents want to learn about the underlying

MDP and reinforce good actions. MDPs lay the foundation for reinforcement learning

so I give an overview from this perspective following the setup of Agarwal et al. (2022).

Definition 1. In reinforcement learning, the interactions between the agent and the

environment can be described by an infinite-horizon MDP M = (S,A,R, T , δ, µ):

· S is the state space

· A is the actions space

· R : S ×A → R is the reward function

· T : S × A → P(S) is a stochastic state-transition function mapping the current

state and action at time step t, st and at, respectively, into probabilities of observing

all possible next states st+1 ∈ S where P(S) ⊆ [0, 1]|S| is the probability simplex

over S
· δ ∈ [0, 1) is the discount factor which is bounded away from one to ensure infinite

summations converge

· µ ∈ P(S) is the initial state distribution governing how the initial state s0 is drawn

For a given MDP M , the agent starts at an initial state s0 ∼ µ. At each time

step t ∈ {0, 1, 2, . . .}, the agent takes action at ∈ A upon observing state st ∈ S,
consequently receives an immediate reward R(st, at) ≜ rt, and then observes the next
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state st+1 ∼ T (·|st, at).5 The stochastic state-transition function T as well as the reward

function R together comprise a model of the environment. The agent repeats this

process indefinitely starting from time step t = 0 forming a trajectory of experiences,

τ = (s0, a0, r0, s1, . . .), with the objective of finding a policy π : S → P(A)6 representing

a decision-making strategy in which the agents’ action selections are only based on the

current state, i.e., at ∼ π(·|st). Notably, reinforcement learning algorithms make use of

the Markov property that the state-transition function only depends on the state and

action from the current time step: T (·|st, at, st−1, at−1, . . .) = T (·|st, at). The agent’s

goal is to maximize, at each time step t, the expected discounted cumulative return

Rt ≜ Eπ

[ ∞∑
h=0

δhrt+h+1

]

and this can be accomplished by finding the optimal policy π∗, which achieves the

maximum expected discounted cumulative return from all states:

π∗ = argmax
π

Eπ

[ ∞∑
h=0

δhrt+h+1

]
.

Therefore, the task of the agent is to maximize its long-run performance while only

receiving feedback from the environment about its one-step reward, namely rt.
7 The

agent can achieve this goal via the use of value functions and their natural extension to

reinforcement learning, action-value or Q-value functions.

B. Action-Value Functions

For a fixed policy π starting from state st, the value function Vπ : S → R is defined

as

Vπ(st) ≜ Eπ

[ ∞∑
h=0

δhrt+h+1

∣∣∣s = st

]
.

5In the deterministic transition case, st+1 = T (st, at).
6This policy is deemed stationary if the randomness in action selections stays constant over time, e.g.,

ϵ-greedy exploration. However, if randomness varies over each time step, e.g., time decaying ϵ-greedy,
the policy is no longer stationary.

7It is important to note the difference between the immediate reward at time t, rt, and what is
commonly to referred to as a return. An agent’s goal is not to maximize their immediate reward, but
their expected discounted cumulative return over the long-run. This expected return over the long-run
is the value that is attributed to following a given policy. Thus, the agent must balance the benefit of
receiving a large immediate reward signal versus the overall goal of maximizing their return. For an in
depth treatment of this difference, see Morales (2020).
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The above value function can be written in the recursive manner giving rise to the

Bellman equation for Vπ:

Vπ(st) ≜ Eπ

[
rt+1 + δVπ(st+1)

∣∣∣s = st

]
.

This is a measure of the quality of the policy π representing the expected cumulative

discounted return following policy π from state st forever onward. The optimal policy,

π∗, has the corresponding value function Vπ∗ :

Vπ∗(st) ≜ max
π

Vπ(st).

Thus, π∗ is defined to be the policy such that Vπ∗(st) ≥ Vπ(st) for all policies π. As

noted in Sutton and Barto (2018), this equation can be written recursively as

Vπ∗(st) = Eπ∗ [rt+1 + δVπ∗(st+1)|s = st].

which is commonly referred to as the Bellman equation for Vπ∗ . This Bellman equation

can be solved for by finding its unique solution Vπ∗ . Existence and uniqueness results for

Vπ∗ for finite Markov decision processes can be found in Szepesvári (2010) and for con-

tinuous space/action and discrete-time Markov decision processes in Bertsekas (2019).

When the model of the environment is unknown, reinforcement learning can be used

to try to find the optimal policy π∗. For a fixed policy π starting from taking an arbitrary

action at in state st, the action-value function Qπ : S ×A → R is defined as

Qπ(st, at) ≜ Eπ

[ ∞∑
h=0

δhrt+h+1

∣∣∣s = st, a = at

]

The above action-value function can be written in the recursive manner8 giving rise to

the Bellman equation for Qπ:

Qπ(st, at) ≜ Eπ

[
rt+1 + δQπ(st+1, at+1)

∣∣∣s = st, a = at

]
.

This is the expected cumulative discounted return from taking any action at in state st

and following policy π forever thereafter.

The reinforcement learning agent wishes to find the optimal policy, π∗, which has

the corresponding action-value function Qπ∗ :

Qπ∗(st, at) ≜ max
π

Qπ(st, at).

Therefore, π∗ is defined to be the policy such that Qπ∗(st, at) ≥ Qπ(st, at) for all policies

8For the derivation of the Bellman equation for Qπ, see the Appendix. The derivation of the Bellman
equation for Vπ follows similarly.
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π. Qπ∗ can be written in the recursive manner

Qπ∗(st, at) = Eπ∗

[
rt+1 + δmax

a′∈A
Qπ∗(st+1, a

′)
∣∣∣s = st, a = at

]
which is commonly referred to as the Bellman equation for Qπ∗ . Notably, it may seem

redundant to include the maximum over actions when we are already considering the

optimal policy π∗; this is simply to emphasize that the optimal policy, π∗, takes the best

action in each state.

Dynamic programming methods can be used to solve for Qπ∗ when the underlying

MDP is known. However, this is rarely the case in practical settings. Thus, given the

state-transition probabilities are unknown, the agent must try to learn Qπ∗ via repeated

interactions with the environment. Reinforcement learning algorithms aim to achieve

this goal via the use of model-free based algorithms, ones that require no such knowledge

of the underlying environment.

C. Multi-Agent Reinforcement Learning

While the setup described here is for a single agent, the framework illustrated can eas-

ily be extended to numerous players thereby leading to multi-agent reinforcement learn-

ing9 which is the methodology used in this article and commonly seen as an intersection

of reinforcement learning and game theory. Expanding the Markov decision process to

the multi-agent case gives rise to what is commonly referred to as a Markov or stochastic

game G = (P,S,A,R, T , δ, µ) in game theory.10 Here, P is the set of n players, S is the

set of states, A ≜×n
i=1Ai is the joint action set and R : S ×A→ R is the reward func-

tion. The stochastic state-transition function is defined as T : S ×A → P(S). Lastly,

δ ∈ [0, 1)n holds each player’s discount factor, and µ ∈ P(S) is the initial state distri-

bution. Now, the state-transitions are a mapping from the state space S along with the

joint action setA, i.e., the transition probability of observing st+1 ∼ T (·|st, a1t, . . . , ant).
Consequently, the reward at each time step t for each agent is a function of the joint

action of all players. The policies for each agent now form a joint stationary policy

π : S → P(A) and the Q-function for each agent now depends on this joint policy π,

i.e., Qi,π : S × A → R. When the agents rewards are perfectly positively correlated

this is a fully cooperative game while when the agents rewards are perfectly inversely

correlated this results in a zero-sum game.

Notably, the transition function can be a deterministic function of the current state

and each agent’s action. Moreover, when the current state is completely characterized

by the current actions, the deterministic state-transition function can be defined as

T : A→ S. This is the transition mapping used in my experiments.

9For an overview of this domain, see Busoniu, Schutter, and Babuska (2008) and Zhang, Z. Yang,
and Basar (2021).

10These games are thoroughly described in Maschler, Solan, and Zamir (2020) and, from the rein-
forcement learning perspective, in Tuyls and Weiss (2012).
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IV. Algorithms

A. SARSA

SARSA (st, at, rt, st+1, at+1), first formally proposed by Rummery and Niranjan (1994),

is an example of an on-policy temporal difference (TD) learning algorithm. TD algo-

rithms use a combination of Monte Carlo (MC) methods and dynamic programming to

achieve a middle ground between the two. More specifically, SARSA uses bootstrapped

estimates of the target value similar to MC methods and unlike Dynamic programming

methods, but does not wait until an episode is finished to calculate a return like dy-

namic programming and unlike the MC approach. For an on-policy method, we must

estimate Qπ(st, at) for the current behavior policy π for all (st, at) ∈ S × A. That is,

the current policy π that is actively generating experiences. The update rule11 for the

SARSA algorithm is

Q(st, at)← Q(st, at) + α [rt+1 + δQ(st+1, at+1)−Q(st, at)] . (1)

where α ∈ [0, 1] is the learning rate and δ ∈ [0, 1) is the discount factor. SARSA is

defined as an on-policy algorithm because the action at+1 chosen in st+1 per policy π

to update Q(st, at) is the action actually taken in the next period t + 1 per policy π.

Furthermore, SARSA is a model-free algorithm as (1) does not require knowledge of the

underlying environment such as the state-transition function. The SARSA pseudocode

using ϵ-greedy as the exploration strategy (discussed further below) with infinite time

horizon is given in Algorithm 1.

Algorithm 1 SARSA w/ ϵ-greedy

Require: α ∈ [0, 1], δ ∈ [0, 1), and ϵ > 0 small
Require: Q(st, at) initialized arbitrarily for all (st, at) ∈ S ×A
1: for all episodes e = 1, . . . , E do
2: Initialize t = 0 and maximum time steps allowed maxt
3: Initialize s0
4: Choose action a0 in state s0 according to ϵ-greedy
5: while t < maxt and not converged do
6: Take action at according to ϵ-greedy
7: Observe rt and st+1

8: Choose action at+1 in st+1 according to ϵ-greedy
9: Q(st, at)← Q(st, at) + α [rt+1 + δQ(st+1, at+1)−Q(st, at)]

10: end while
11: end for

11For the intuition of the update rule which is common to all TD algorithms, see the Appendix.
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B. Q-learning

Q-learning is a fundamental reinforcement learning algorithm developed by Watkins

and Dayan (1992). Studies using Q-learning to investigate collusion go as far back

as Waltman and Kaymack (2008) who looked at the potential for Q-learning agents to

collude in a Cournot oligopoly game setting and this algorithm is still being investigated

in works such as Calvano et al. (2020) and Klein (2021) who looked at simultaneous

and sequential oligopoly environments, respectively. Like SARSA, Q-learning is a TD

algorithm. However, it is off-policy meaning we estimate Qπ(st, at) using a different

policy π′ for all (st, at) ∈ S ×A. The update rule for Q-learning is

Q(st, at)← Q(st, at) + α

[
rt+1 + δmax

a′∈A
Q(st+1, a

′)−Q(st, at)

]
. (2)

where α ∈ [0, 1] is the learning rate and δ ∈ [0, 1) is the discount factor. Q-learning

is defined as an off-policy algorithm because the action a ∈ argmax
a′∈A

Q(st+1, a
′) is not

necessarily the action actually taken in the next period t+1 per policy π. Furthermore,

Q-learning is a model-free algorithm as (2) does not require knowledge of the underlying

environment such as the state-transition function. The Q-learning pseudocode using ϵ-

greedy as the exploration strategy (discussed further below) with infinite time horizon

is given in Algorithm 2.

Algorithm 2 Q-learning w/ ϵ-greedy

Require: α ∈ [0, 1], δ ∈ [0, 1), and ϵ > 0 small
Require: Q(st, at) initialized arbitrarily for all (st, at) ∈ S ×A
1: for all episodes e = 1, . . . , E do
2: Initialize t = 0 and maximum time steps allowed maxt
3: Initialize s0
4: Choose action a0 in state s0 according to ϵ-greedy
5: while t < maxt and algorithm not converged do
6: Take action at according to ϵ-greedy
7: Observe rt and st+1

8: Q(st, at)← Q(st, at) + α

[
rt+1 + δmax

a′∈A
Q(st+1, a

′)−Q(st, at)

]
9: end while

10: end for

C. Exploration Versus Exploitation

Within the domain of reinforcement learning lies the pivotal challenge of balancing

the pursuit of actions that promise immediate rewards with the imperative to explore

alternatives that might yield even greater long-run returns. This equilibrium is encapsu-

lated in the exploitation-exploration trade-off, a cornerstone concept in the literature of

reinforcement learning. The overarching objective of reinforcement learning algorithms

is to strategically select actions that maximize the expected discounted cumulative re-
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turn. However, the challenge lies in avoiding excessive exploitation, where actions yield-

ing current benefits are favored, at the risk of neglecting unexplored actions that could

potentially offer superior returns.

Various strategies have been devised to address this fundamental problem, rang-

ing from Boltzmann experimentation to Upper Confidence Bounds, as outlined by

Auer (2002). One prevalent method for navigating the exploitation-exploration trade-

off is the ϵ-greedy algorithm. This approach introduces an element of randomness by

selecting a random action at ∈ A with small probability ϵ. In contrast, it leans towards

exploitation by choosing the currently perceived best action in a given state st with

probability 1 − ϵ. An important modification used in this paper is ϵ-greedy with time

decay where exploration is encouraged more for early time steps in an episode and di-

minishes as the algorithm gains experience operating in the environment. Specifically,

this study uses e−βt, where t is time step and β is an exploration parameter, as this

approaches 0 as t tends to infinity at an exponential rate so exploration occurs earlier

in any given episode.

The ϵ-greedy algorithm encapsulates the essence of the exploration-exploitation trade-

off, offering a pragmatic and widely employed solution to strike a balance between im-

mediate rewards and the potential for discovering more rewarding actions. For a com-

prehensive understanding of the exploration-exploitation trade-off, see Morales (2020).

D. Convergence

Notably, while convergence results for SARSA and Q-learning agents individually

exist in single player systems, similar proofs do not when extending to multi-agent

reinforcement learning environments. To that end, I allow the agents to engage in price

competition each episode for a maximum of ten million time steps. Convergence is

checked for every 100 time steps and deemed to be achieved when both algorithms’

optimal actions in any state have not changed for 1,000 consecutive convergence checks.

That is, if for each player i and each state s, the set argmax
a∈Ai

Qi(a, s) has not changed for

1,000 consecutive time steps that convergence is checked for. This effectively suggests

that each agent’s action has not changed for 100,000 consecutive time steps. In my

baseline analysis outlined in section VI.A., each of the E = 100 episodes converged well

before the maximum ten million time step mark, but many repetitions were still needed.

This number depends on factors such as the discount factor of each agent and the total

number of players in the market.

V. Economic Environment

I follow a similar economic environment to that of Calvano et al. (2020). Firms

engage in an infinitely repeated Bertrand-Markov pricing game where they set prices

simultaneously and condition these actions on past history. The stage game models price
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competition via a logit demand model, as used in a wide variety of empirical applications

across many different industries, with constant marginal costs.

To apply the MDP setup described in the prior section to an infinitely repeated

simultaneous move Bertrand environment, an agent represents each firm producing a

differentiated good i ∈ {0, 1, . . . , n} where i = 0 is the outside option whose price is

normalized to zero and n is both the number of products and the number of firms in

the market. At each time step t, firm j has demand

djt =
exp

(
aj−pjt

µ

)
exp

(
a0
µ

)
+
∑n

i=1 exp
(
ai−pit

µ

) .
where parameters µ and ai are product quality indices capturing horizontal and vertical

differentiation, respectively. Since product 0 is the outside good, a0 is an inverse index

of aggregate demand. ci is marginal cost, and I assume no fixed costs. Upon each agent

i selecting an action pit in their action space Ai at time step t, they receive reward

rit = (pit − ci)dit and transition to the next state st+1 = (p1,t−1, . . . , pn,t−1).

To ensure the state space is finite, I use a bounded memory of length ki for each

player i so that a given state can be represented as st = {pt−1, . . . ,pt−k} where each

pt−h ∈×n
i=1Ai for 1 ≤ h ≤ k is the vector of all firm prices set in period t− h. Unless

noted otherwise, I assume ki = 1 ∀i ∈ {1, . . . , n} so that st = pt−1. Notably, the state

space Si =×n
i=1Ai, with cardinality |Si| = mn∗ki , is completely characterized by all

possible price combinations each firm can set. When ki = 1 ∀i ∈ {1, . . . , n}, each firm

bases its choice of actions at time step t on the history of each firms’ actions at time

step t− 1 meaning they have a one period recall.

For each of the parameter values, I compute the static Bertrand-Nash equilibrium

prices pN and the collusive prices pC via fixed point iteration until convergence is

achieved. When considering collusive behavior of SARSA and Q-learning as both require

a discrete number of possible actions, I discretize the action space Ai to contain fifteen

equally spaced price points from the minimum to the maximum price firm i can set where

ξ ∈ R++ is the step size between each price. These minimum and maximum prices are

1.0 (marginal cost) and 2.1 (slightly above the fully collusive price), respectively.

To determine the level of collusion and stay consistent with the existing literature, I

use the following measure profit measure:

∆ite ≜
rite − riN
riC − riN

.

rite is firm i’s profit at time step t in episode e, riN is firm i’s competitive profit from

the one-shot Bertrand-Nash equilibrium when firms set prices are pN , and riC is firm i’s

collusive profit when firms use prices pC . Notably, ∆ite = 0 and ∆ite = 1 ∀i ∈ {1, . . . , n}
imply perfectly competitive and perfectly collusive markets, respectively. Throughout
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this article I define

∆ =
1

100000(nE)

n∑
i=1

E∑
e=1

T∑
t=T−100000

∆ite

as the profit measure ∆ite averaged across the last 100,000 time steps prior to conver-

gence and then subsequently averaged across all episodes and firms.

Unless otherwise noted, the economic environment consists of a symmetric duopoly

(n = 2) with ci = 1, ai = 2, δi = 0.95, and ki = 1 ∀i ∈ {1, . . . , n}, while a0 = 0, µ = 1/4,

m = 15, and ξ = (2.1− 1.0)/(m− 1). ϵ-greedy time decay parameter and learning rate

is fixed for each i at βi = 0.00001 and αi = 0.15. Moreover, each firms pricing space is

identical so that Ai = A−i ∀i ∈ {1, . . . , n} and, consequently, Si = S−i ∀i ∈ {1, . . . , n}.
The Q-matrix at t = 0 for firm i is initialized with average profits for choosing an

action in Ai given firm j chooses actions in Aj . This initial Q-matrix is then divided

by 1− δ so that it contains estimates of future payoffs given actions taken today. I test

for robustness under differing initialized Q-matrices across the two agents and obtain

similar results to that discussed below. Notably, each agent i’s Q-matrix is an element

in R|Si| × R|Ai| which corresponds to a 225 x 15 matrix in the baseline model.

Agents to interact for E = 100 episodes. Results are subsequently averaged over

these episodes and reported.

It is crucial to underscore that the algorithms under examination operate in a knowl-

edge vacuum concerning the economic environment, possessing only the capacity to

compute profits.

VI. Results

A. Baseline Model

Table 1 and the learning curves depicted in Figure 1 reveal compelling evidence that

SARSA and Q-learning agents, engaged in price competition, demonstrate the capability

to achieve outcomes that surpass traditional competitive benchmarks. The data in Table

1 specifically emphasizes the collusion measure ∆ and the percentage change observed

in transitioning from the Bertrand-Nash equilibrium to the levels achieved over E = 100

episodes averaged over the last 100,000 time steps prior to algorithmic convergence.
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Table 1

Total/Average SARSA Q-learning

∆ 0.4549 0.4866 0.4233

Percentage Change from Bertrand-Nash Outcome

Profits 23.38% 25.01% 21.75%

Demand -4.51% -2.81% -6.20%

Prices 9.82% 9.49% 10.15%

Revenue 4.45% 6.12% 2.77%

CS -18.27%

Results averaged across E = 100 episodes.
Average number of time steps until convergence is 723,230.

Recalling that ∆ = 0 implies a perfectly competitive market, while ∆ = 1 implies a

perfectly collusive outcome, the agents collectively achieve ∆ = 0.4549 at convergence,

averaged across the E = 100 episodes. This indicates that while perfectly collusive

levels were not attained, the algorithms’ profit gains converge to values well above the

competitive outcome. Additionally, consumer welfare decreases by 18.27% relative to

the Bertrand-Nash outcome. This result underscores the capacity of heterogeneous

algorithms, namely SARSA and Q-learning, to yield supracompetitive outcomes in the

realm of price competition.

These algorithms achieve convergence at time step 723,230 on average across the

E episodes. This convergence point is over 100,000 time steps less to that observed

when two SARSA agents compete against each other and roughly 35,000 time steps

more than when two Q-learning agents compete against each other. This suggests that

algorithmic heterogeneity may not be slowing down learning times but rather that the

SARSA algorithm itself contributes to the observed convergence delay. This delay could

be attributed to SARSA’s on-policy nature, requiring learning to be done exclusively

using experiences generated by the policy the algorithm is currently employing.

A common concern when running reinforcement learning experiments is that results

can differ widely across varying random seeds. To that end, I run an experiment anal-

ogous to that above averaging results over ten differing random seeds. These averages

correspond very well to that observed in Table 1. For instance, the convergence rate av-

eraged across the random seeds is 729,557, only 6,000 time steps more than that noted

in Table 1. Moreover, consumer surplus experiences a 19.06% decline relative to the

Bertrand-Nash outcome which is less than a single percentage point away from that

seen above. This establishes further credibility of the results seen in Table 1 in that

these outcomes are not solely a function of the stochastic process that a certain seed

may generate.
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Figure 1 vividly presents the learning trajectories of the collusion measure ∆ and

the evolution of consumer welfare, each accompanied by their respective 95% confi-

dence bands. The algorithms showcase a learning trajectory where ∆ progressively

surpasses the competitive baseline while concurrently witnessing a decline in consumer

welfare. Remarkably, both variables exceed competitive levels at approximately time

step 150,000, stabilizing around time step 500,000. By this point, the lower bound of

the 95% confidence band is significantly above the competitive benchmark, suggesting

a robust rejection of the hypothesis of a competitive market. The widening of this

confidence band as convergence approaches can be partially attributed to the injected

heterogeneity in the experiment, where SARSA and Q-learning, though initialized with

identical Q-matrices, gradually develop distinct Q-values for each state-action pair over

time. This divergence contributes to the increasing uncertainty reflected in the widening

confidence band as the algorithms evolve.

Figure 1

Results averaged across E = 100 episodes.
Shaded area represents 95% confidence bands.

Moreover, in the scenario where two SARSA agents compete, convergence leads to

∆ = 0.2706, while in the case of two Q-learning agents, it converges to ∆ = 0.6301, and

the Q-learning agents converge much faster than the two SARSA agents. Due to the

differing updating procedures of the two algorithms, Q-learning learns an optimal policy

directly via off-policy learning allowing Q-matrix updates to be applied using a different

policy than the one currently being optimized. This leads to Q-learning gaining higher
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profit levels quicker while trained offline while SARSA likely performs better in an online

setting due to its on-policy nature. To that end, these ∆ differentials align with the

findings of Brown and MacKay (2023) in that if both firms initially employed SARSA

and one switched to the superior pricing technology Q-learning (as these algorithms are

trained offline in this setting), all firms obtain higher prices and profits. Interestingly,

this effect seems so intense to where SARSA converges to higher profits, on average,

relative to Q-learning. A deeper exploration into pricing games between on-policy and

off-policy algorithms may provide further insights into this intriguing finding.

Examining Figure 2, which portrays the distributions of actions taken for each agent,

I average these results across all episodes for each firm. This distribution is fairly

normally distributed with firms demonstrating a proclivity to take the profit maximizing

action. Importantly, the algorithms exhibit a level of flexibility by choosing alternative

prices, a phenomenon attributed to the incorporation of the ϵ-greedy procedure. This

mechanism guarantees ample exploration, enabling the agents to delve into a diverse

range of actions beyond the seemingly optimal choice. As a result, agents delve into

a diverse range of actions beyond the apparent optimal choice, thereby enriching the

adaptive capabilities of the learning process.

Figure 2

Figure 3 depicts the dynamic interplay between the two distinct algorithms, SARSA

and Q-learning, engaged in price competition. Notably, the graphical representation

reveals a strategic implementation of reward-punishment schemes. In a noteworthy in-

stance, when the SARSA (Q-learning) agent deviates by undercutting to the one-shot
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Bertrand-Nash price level at t = 3, the Q-learning (SARSA) agent responds promptly

in t = 4 with a retaliatory undercutting punishment. Over subsequent time intervals,

both agents gradually revert to the initial prices upon algorithmic convergence, echo-

ing patterns observed in the current experimental algorithmic pricing literature that

algorithms do implement trigger strategies, but they are not grim as first described in

Friedman (1971). This visualization, coupled with the depictions of supracompetitive

profits and prices in Figures 1 and 2, serves as a compelling proof-of-concept. It signi-

fies that asymmetric AI pricing software has the capacity to learn and sustain collusive

outcomes through the strategic deployment of reward-punishment mechanisms. These

findings not only align with established experimental literature regarding homogeneous

AI pricing systems, but also underscore the nuanced dynamics and potential implications

of algorithmic collusion in the domain of pricing strategies.

Figure 3

B. More Than Two Players

In each of the above settings I have considered a duopoly market. As noted in

Ezrachi and Stucke (2020), algorithmic tacit collusion is likely to appear in concentrated

markets so the algorithms can more easily monitor competitor prices and adjust their

own. While the duopoly case provides a proof-of-concept that asymmetric reinforcement

learning algorithms in such concentrated markets can indeed learn collusive strategies,

it is imperative to extend this framework to consider the implications of incorporating a

market with more than two firms. In this section I extend the baseline setup involving
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a SARSA and Q-learning agent engaging in price competition to a market with three

players: two SARSA agents and one Q-learning agent.

Table 2

Total/Average SARSA SARSA Q-learning

∆ 0.3197 0.3023 0.2935 0.3634

Percentage Change from Bertrand-Nash Outcome

Profits 34.54% 32.65% 31.71% 39.25%

Demand -2.71% -5.09% -6.51% 3.46%

Prices 12.39% 12.85% 13.22% 11.11%

Revenue 7.35% 5.10% 3.82% 13.13%

CS -16.44%

Results averaged across E = 100 episodes.
Average number of time steps until convergence is 1,089,440.

Table 2 gives results from this experiment. Notably, ∆ still lies above the competitive

outcome, but well-below the joint collusive value of one, aligning well with the results

of Table 1. Relative the baseline model of one SARSA and one Q-learning agent, ∆

decreases by 29.72%. Moreover, the average number of time steps increases by roughly

50% to 1,089,440. This suggests that while collusive outcomes are inhibited in terms of

the profit measure ∆ and learning times, asymmetric reinforcement learning procedures

with greater than two agents can still learn anti-competitive behavior given enough time.

Figure 4 visualizes the algorithm’s ability to implement reward-schemes in order to

sustain converged strategies in equilibrium. A deviation in period t = 3 by SARSA

(Q-learning) is met with a swift punishment in period t = 4 by Q-learning (SARSA).

Shortly thereafter, these algorithms revert back to their pre-deviation prices. While the

algorithms don’t implement a punishment as severe as that observed in Figure 3, this

punishment is a sufficient deviation deterrent as the deviating agent’s cost from doing

so still outweighs the gains. Seemingly, these algorithms retain the power to implement

trigger strategies even in the face of more competition within the market.
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Figure 4

C. Reward-Punishment Schemes Prior to Convergence

Even though trigger strategies are successfully implemented by both algorithms upon

convergence12 at around 723,000 time steps, it’s worth exploring whether such time is

necessary to sustain collusive outcomes. Notably, in Figure 1, the value of ∆ comfortably

surpasses the competitive benchmark with 95% confidence by time step 400,000. To

further investigate, I conducted tests to check if reward-punishment schemes could be

effectively implemented at this time step, as well as at time step 200,000. It’s important

to note that in each case for each episode, the algorithms had not yet converged.

12Recall that convergence is checked for every 100 time steps and is said to be achieved when neither
algorithms’ optimal actions in any state have changed for 1,000 consecutive time steps that convergence
is checked for.
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Figure 5

Figure 4 illustrates that convergence is not a prerequisite for either algorithm to

implement trigger strategies. In this scenario, reward-punishment schemes are tested

approximately 320,000 time steps prior to algorithmic convergence, and both algorithms

exhibit behavior identical to that shown in Figure 3. However, when this setup is

extended to allow the algorithms to interact for only 200,000 time steps, their behavior

becomes more erratic, as demonstrated by Figure 5.
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Figure 6

D. Varying Learning Parameters

A critical component of these algorithms’ collusive capabilities is their respective

learning parameters: the discount factor δi, the learning rate αi, and the ϵ-greedy ex-

perimentation parameter βi. In this setting, I allow these parameters to vary across

algorithms to determine outcome differentials from the baseline model.

Firstly, I let δi vary across 0.00, 0.50, 0.75, and 0.99 for agent i while keeping it

fixed at 0.95 for agent j. In both cases where the SARSA agent’s discount factor varies

while the Q-learner’s stays constant and vice versa, ∆ surpasses the competitive baseline

for each of the four scenarios scenario. Moreover, convergence rates drop from roughly

975,000 to 720,000 when the discount factor of one agents transitions from 0.00 to 0.99.

Figure 7 visualizes learning over time steps when the SARSA agent’s discount factor

varies, and Figure 8 depicts the converse scenario. In the case of the latter, the algo-

rithms converge to a higher level of ∆ when SARSA values future returns moderately,

while Figure 8 shows the converged value of ∆ increases strictly monotonically in the

Q-learner’s discount factor.
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Figure 7

Figure 8

When either algorithm’s discount rate varies across 0.50, 0.75, and 0.99, trigger

strategies are implemented similarly to the baseline model. However, when the SARSA

(Q-learning) agent’s discount factor is 0.00, the Q-learning (SARSA) agent, whose dis-

count factor is fixed at 0.95, has difficulty implementing trigger strategies. The case of

the SARSA agent having a 0.00 discount factor is illustrated in Figure 9.
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Figure 9

The selection of learning rate (α) and exploration rate (β) plays a pivotal role in

shaping the efficacy of reinforcement learning algorithms. In Figure 10, I crafted a

grid comprising 10,000 unique (α, β) pairs, spanning learning rates from 0.01 to 0.30

and experimentation parameters ranging from 10−6 to 2 ∗ 10−5. Higher values of α

correspond to attempting to speed up the learning while process while higher values of

β correspond to less exploration. For every (α, β) pairing, I computed the average ∆

of each agent over the final 100,000 time steps leading up to convergence across 100

episodes (E = 100).
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Figure 10

The discerned patterns revealed a noteworthy divergence between SARSA and Q-

learning algorithms. Notably, Q-learning exhibited superior resilience to low learning

rates, while SARSA sustained ∆ values above 0.50 as long as α approximated values

greater than 0.15, irrespective of β. Performance may be highest for high exploration

rates (low β values) due to SARSA suffering from high variance and bias when this rate

is low (Hu (2023)). The overarching trend unveiled an optimal performance domain

for both algorithms, characterized by elevated learning rates and experimentation rates.

This strategic configuration facilitated swift exploitation of the most lucrative actions,

particularly advantageous in environments featuring compact state spaces akin to the

one under scrutiny in this experiment. Additionally, amplifying αmagnifies the influence

of novel Q-matrix updates, accelerating the learning process and enhancing algorithmic

efficiency.

From an economic standpoint, these findings underscore the potential of finely tuned

algorithms to surpass profit thresholds that far exceed the Bertrand-Nash equilibrium.

Such a revelation should serve as a warning to antitrust authorities, signaling the emer-

gence of a landscape where algorithmic optimization can yield profit margins going well

beyond traditional economic benchmarks.
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Figure 11

The convergence rates depicted in Figure 11, representing a comprehensive grid of

10,000 combinations of learning and experimentation rates, unveil intriguing insights.

Notably, across various values of α for a given β, convergence rates exhibit uniformity.

However, a pivotal observation emerges as the experimentation parameter approximates

0.5 ∗ 10−5: a vertical asymptote materializes, instigating an exponential surge in con-

vergence rates. This distinctive behavior underscores that β remains the predominant

determinant of convergence rates. Nonetheless, as elucidated in Figure 10, careful cali-

bration of α proves indispensable to guide these algorithms towards optimal convergence

outcomes.

Figure 12 illustrates the interplay between ∆ and the time step required for con-

vergence concerning either α or β. The top panel reveals a noteworthy trend: as both

the learning and convergence rates escalate, the profit gain measure ∆ demonstrates a

corresponding increase. Additionally, the bottom panel unveils a compelling observa-

tion: as the exploration parameter decreases and simultaneously the convergence rate

escalates, ∆ attains elevated values. This dual-panel representation underscores the

relationship between the models’ parameters and the resulting convergence dynamics,

offering insights into the optimization of algorithmic performance.
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Figure 12

E. Zero Recall

Originally, I considered a scenario where each firm had a one-period recall, denoted

as ki = 1 ∀i ∈ {1, . . . , n}. This implies that at time step t, firm i retained memory of

the price vector pt−ki but not of pt−h for all h > ki. Building upon this framework,

I introduced a more challenging setting where agent i has no memory (ki = 0), while

agent j maintains a one-period recall (kj = 1). In this extended setup, the state space

for agent i is reduced to a singleton, implying that, from its perspective, all states are

indistinguishable (Asker, Fershtman, and Pakes (2022)). Meanwhile, the state space for

agent j remains of size mn·kj = 225.
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In experiments where either a SARSA or Q-learning agent is subjected to zero-recall,

the results are notably similar. When the SARSA agent has zero-recall, ∆i and ∆j , on

average across E = 100 episodes, are 0.3654 and 0.8341 for the SARSA and Q-learning

agents, respectively. Similarly, when the Q-learner has no memory, ∆i and ∆j are

0.5771 and 0.2873, respectively. This suggests that even when one algorithm is severely

inhibited, supracompetitive profit levels are still attainable.

However, the quantity for the agent with zero recall, in both cases, falls significantly

below the competitive outcome, indicating that the algorithm with one-period recall

might effectively be dominating the market, potentially leading to market control. This

observation aligns with Hettich (2021), where a comparison between a more powerful

algorithm (Deep Q-network) and a less powerful one (Q-learning) showed that the former

gained substantial market power.

Additionally, it is noteworthy that the agent with zero recall is unable to implement

trigger strategies. This limitation arises because, if the agent with one-period recall

deviates at time step t, the other agent has no recollection of this deviation, as it

interprets every state as identical. Conversely, the algorithm with memory of time step

t can effectively implement trigger strategies following a deviation at time step t + 1,

promptly reverting to its price set prior to the deviation shortly thereafter. Figure 13

below depicts the scenario of the SARSA agent having zero-recall, and the visualization

is practically identical when the roles are reversed.

Lastly, convergence takes roughly 70,000 time steps longer relative to the baseline

model, indicating that learning collusive outcomes is inhibited when one algorithm is

constrained. This adds further credence to algorithms learning tacit collusion via re-

peated interactions with each other in the environment.

30



Figure 13

F. Stochastic Demand Setting

In the baseline case, I considered deterministic demand, where each of the parameters

within the economic environment was fixed. However, it’s more realistic to assume that

demand is stochastic, with these parameters fluctuating due to random shocks. In this

section, I allow the inverse index of aggregate demand, denoted as a0, to vary.

In this stochastic setting, a0 is distributed uniformly over the set
{
aL0 , 0, a

H
0

}
, where

aL0 = −aH0 . To illustrate, when a0 = aL0 , demand experiences a negative shock, and

when a0 = aH0 , demand experiences a positive shock. These shocks occur at each time

step for all episodes entirely idiosyncratically.

I consider two cases: aL0 = 0.15 and aL0 = 0.30. When the former is true, ∆

converges to 0.4364, aligning well with the case of no demand shocks. When the lat-

ter holds, ∆ decreases to 0.3568 at convergence, roughly 27% lower relative to when

a0 = 0 with probability one. Convergence in the event of aL0 equal to 0.15 and 0.30 is

achieved, on average, at t = 747, 482 and t = 794, 613, respectively. This convergence

rate lies, on average, about 47,000 time steps above the case when the inverse index a0

is deterministically equal to zero. These results suggest that demand shocks hamper

algorithmic collusion to a slight degree, but do not completely prevent it. Moreover,

reward-punishment schemes are implemented in a manner practically identical to that

observed in Figure 3, ensuring that anti-competitive outcomes are sustained even in the

presence of demand shocks.
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G. Differing Pricing Spaces

In practice, it is highly implausible that each firm tunes its respective algorithm

with an identical action space, even when dealing with similar products. To capture

this realistic scenario, I extend the baseline model, allowing firms to differ in the action

spaces each algorithm is trained on. Both firms still have m = 15 actions to choose from,

but now the firm whose action space differs from the baseline model only has a greater

average profit when setting five of the fifteen possible prices. Thus, the firm with this

action space can be seen as being at a disadvantage.

When the action space of SARSA or Q-learning changes, the profit gain measure

∆ does not vary significantly to that seen in Table 1. However, when the SARSA

agent’s action space is altered, convergence rates increase by approximately 190,000

time steps, while when the Q-learner is subjected to such a change convergence rates

only increase by roughly 10,000 time steps. These differing convergence rates provide

further evidence that SARSA has slower learning times relative to Q-learning, especially

when at a disadvantage regarding how it is trained. Importantly, in both cases, each

algorithm can implement a trigger strategy in a similar manner to that visualized in

Figure 3.

VII. Conclusion

This paper discusses the exploration of heterogeneous algorithmic collusion attempt-

ing to unravel the intricacies of such collusive behavior. The findings reveal that rela-

tively simple SARSA and Q-learning agents possess the capability to learn pricing strate-

gies that exceed the competitive level, leading to the attainment of supracompetitive

outcomes. Additionally, these agents demonstrate the ability to retain anti-competitive

profits and prices via the implementation of learned trigger strategies. The ensuing re-

sults shed light on the persistency and efficiency of collusive strategies from asymmetric

AI systems, offering insights into the speed with which such strategies can be acquired.

The findings of this study should raise concerns for antitrust authorities, adding to

the growing body of experimental and empirical evidence that strongly indicates the

existence of tacit algorithmic collusion. While the focus on homogeneous algorithmic

collusion is noteworthy, in practice diverse firms are likely engaging with different soft-

ware companies to implement varied pricing technologies and such a choice of technology

is conditional on the varied costs of implementation. This paper serves as a compelling

proof-of-concept, demonstrating that algorithms with distinct architectures not only

have the capacity to learn collusive behavior, but also sustain such outcomes in equi-

librium with the use of trigger strategies. This underscores the plausibility of pricing

technologies engaging in collusion within real-world environments. Importantly, these

algorithms don’t rely on a shared language or explicit communication among managers

to achieve anti-competitive prices and profits. The implication is that existing antitrust
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measures may be insufficient in addressing the complexities introduced by algorithmic

collusion. The absence of communication channels and the ability of algorithms with

diverse structures to independently learn collusive strategies challenges the traditional

tools used by antitrust authorities. This aligns with the perspectives from a wide-range

of legal scholars suggesting a pressing need to re-evaluate current antitrust laws to ef-

fectively navigate cases involving tacit algorithmic collusion.

A critical challenge confronting algorithms like SARSA and Q-learning lies in their

notably sluggish learning times. The average convergence iteration for price competi-

tion, as observed with these two agents, stands at 723,230, with exploration demanding

approximately 500,000 time steps before the algorithms begin stabilization. This tem-

poral demand raises concerns, especially when considering practical applications as the

state spaces increases exponentially in the number firms. As highlighted by Calvano

et al. (2020), even if each time step lasted only a few minutes, the cumulative learn-

ing times would extend over several years, rendering the practical adoption of these

algorithms seemingly unrealistic. In reality, while training is likely done offline before

the algorithms are deployed, learning likely continues thereafter to ensure the offline

work does not become antiquated. After these algorithms are put into the real-world,

such an environment could be differing from the one it was trained in. Adding to the

complexity, SARSA and Q-learning agents encounter limitations in handling continuous

action spaces—a prevalent feature likely employed in real-world pricing software. This

underscores a crucial inadequacy in their potential applicability to practical scenarios.

Therefore, a substantial extension would be to extend this framework to algorithms that

are capable of handling a continuum of actions to determine: (1) if asymmetric rein-

forcement learning algorithms acting in that space can still obtain collusive outcomes

and (2) if the knowledge accumulated in the learning environment is transferable to

a slightly different market environment as would likely be the case in practice. Fur-

thermore, such algorithms may be much more likely to learn at increased rate given

they rely on advanced technology, namely neural networks and, in particular, policy

gradient-based reinforcement learning procedures in which there is a current scarcity in

the experimental AI pricing literature. Such a study corroborating this works’ results

would render the idea of tacit algorithmic collusion much more practically plausible.
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VIII. Appendix

A. Temporal Difference (TD) Update

Theorem 1. The Bellman equation for Qπ is

Qπ(st, at) ≜ Eπ

[
rt+1 + δQπ(st+1, at+1)

∣∣∣s = st, a = at

]
.

Proof.

Qπ(st, at) ≜ Eπ

[
∞∑

h=0

δhrt+h+1

∣∣∣s = st, a = at

]
(1)

= Eπ

[
rt+1 +

∞∑
h=1

δhrt+h+1

∣∣∣s = st, a = at

]
(2)

= Eπ [rt+1|s = st, a = at] + Eπ

[
∞∑

h=1

δhrt+h+1

∣∣∣s = st, a = at

]
(3)

= Eπ [rt+1|s = st, a = at] + Eπ

[
∞∑

h=0

δh+1rt+h+2

∣∣∣s = st, a = at

]
(4)

= Eπ [rt+1|s = st, a = at] + Eπ

[
δ

∞∑
h=0

δhrt+h+2

∣∣∣s = st, a = at

]
(5)

= Eπ

[
rt+1 + δ

∞∑
h=0

δhrt+h+2

∣∣∣s = st, a = at

]
(6)

= Eπ

[
Eπ

[
rt+1 + δ

∞∑
h=0

δhrt+h+2

∣∣∣s = st, a = at, s = st+1, a = at+1

] ∣∣∣s = st, a = at

]
(7)

= Eπ [Eπ [rt+1|s = st, a = at, s = st+1, a = at+1] |s = st, a = at] (8)

+ δEπ

[
Eπ

[
∞∑

h=0

δhrt+h+2

∣∣∣s = st, a = at, s = st+1, a = at+1

] ∣∣∣s = st, a = at

]
(9)

= Eπ [Eπ [rt+1|s = st, a = at] |s = st, a = at] (10)

+ δEπ

[
Eπ

[
∞∑

h=0

δhrt+h+2

∣∣∣s = st+1, a = at+1

] ∣∣∣s = st, a = at

]
(11)

= Eπ [rt+1|s = st, a = at] + δEπ

[
Eπ

[
∞∑

h=0

δhrt+h+2

∣∣∣s = st+1, a = at+1

] ∣∣∣s = st, a = at

]
(12)

= Eπ

[
rt+1 + δEπ

[
∞∑

h=0

δhrt+h+2

∣∣∣s = st+1, a = at+1

] ∣∣∣s = st, a = at

]
(13)

= Eπ

[
rt+1 + δQπ(st+1, at+1)

∣∣∣s = st, a = at

]
. (14)

where we move from line (6) to line (7) via the so-called Tower Property of Conditional

Expectation. An analogous derivation exists for the value function, Vπ(st).

The term rt+1 + δQπ(st+1, at+1) is called the TD target for SARSA and reflects the

expected return based on the current policy π, while the difference between the TD

target and Qπ(st, at) is SARSA’s TD error. Given the TD-target for SARSA involves

the current policy π, this gives rise to SARSA’s on-policy nature.

On the other hand, Q-learning uses the TD target of rt+1+ δmax
a′∈A

Qπ(st+1, a
′) which
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is essentially the estimated Bellman equation for Qπ and can be derived by taking the

maximum of the above equation over all polices π. This implies we take the maximum

over actions a′ ∈ A since this is what the optimal policy would do and we want our

policy π to get as close as possible to the optimal policy π∗. Consequently, Q-learning

constructs its TD-target based on the greedy policy, i.e., the policy that gives rise to

the Q-value maximizing action in state st+1 which is not necessarily the policy actually

being followed leading to the off-policy nature of Q-learning.

The goal of TD-based reinforcement learning algorithms is to minimize their respec-

tive TD errors. Note that in the update rules for SARSA and Q-learning, once their

respective TD errors are zero no further updating occurs.

B. Relationship Between the Value and Action-Value Functions

Theorem 2. The value function can be expressed in terms of the action-value function

as

Vπ(st) ≜ Eπ

[
Qπ(st, at)

∣∣∣s = st

]
.

Proof. By applying the law of total expectation, it follows that

Vπ(st) ≜ Eπ

[ ∞∑
h=0

δhrt+h+1

∣∣∣s = st

]

= Eπ

[
Eπ

[ ∞∑
h=0

δhrt+h+1

∣∣∣s = st, a = at

] ∣∣∣s = st

]
= Eπ

[
Qπ(st, at)

∣∣∣s = st

]
.
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